Subscribe Now Subscribe Today
Research Article
 

Comparative Effects of Copper and Cadmium on Growth and Lipid Content in Maize Seedlings (Zea mays L.)



Radhouane Chaffai , Ali Tekitek and Ezzedine El Ferjani
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Maize seedlings were grown in hydroponic nutrient solutions and treated for four days with 100 μM CuSO4 or Cd(NO3)2. The effects of copper and cadmium on growth parameters and lipid composition of maize organs were studied. The results showed that copper reduced more significantly than cadmium the fresh and dry matter production at the aerial part of the plant. The two metals were found to be localized in major part in roots. We focus on the soluble and cell wall fractions of these metals. Hence, the soluble fraction of Cd was greater than that of copper. By contrast, the cell wall fraction of Cu was more significant than that of Cd. Results showed that glycolipids were more affected than phospholipids and steryl lipids. Thus, copper reduced more significantly the glycolipids content in roots and shoots. Moreover, we have suggested that the increase in MDA content in roots by copper could be the result of membrane lipoperoxidation.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Radhouane Chaffai , Ali Tekitek and Ezzedine El Ferjani , 2005. Comparative Effects of Copper and Cadmium on Growth and Lipid Content in Maize Seedlings (Zea mays L.). Pakistan Journal of Biological Sciences, 8: 649-655.

DOI: 10.3923/pjbs.2005.649.655

URL: https://scialert.net/abstract/?doi=pjbs.2005.649.655

REFERENCES
1:  De Vos, C.H.R., H. Schat, R. Vooijs and W.H.O. Ernst, 1989. Copper-induced damage to the permeability barrier in roots of Silene cucubalus. J. Plant Physiol., 135: 164-169.

2:  Tappel, A.L., 1973. Lipid peroxidation damage to cell components. Fed. Proc., 32: 1870-1874.
PubMed  |  Direct Link  |  

3:  Fox, T.C. and M.L. Guerinot, 1998. Molecular biology of cation transport in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 49: 669-696.
Direct Link  |  

4:  De Vos, C.H.R., H. Schat, M.A.M. De Waal, R. Vooijs and W.H.O. Ernst, 1991. Increased resistance to copper-induced damage of root cell plasmalemma in tolerant Silene cucubalus. Physiol. Plant., 82: 523-528.
Direct Link  |  

5:  Clijsters, H. and F. Van-Assche, 1985. Inhibition of photosynthetic by heavy metals. Photosynthesis Res., 7: 31-40.
Direct Link  |  

6:  Di Toppi, L.S. and R. Gabbrielli, 1999. Response to cadmium in higher plants. Environ. Exp. Bot., 41: 105-130.
CrossRef  |  Direct Link  |  

7:  Gallego, S.M., M.P. Benavides and M.L. Tomaro, 1996. Effect of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress. Plant Sci., 121: 151-159.
Direct Link  |  

8:  Cathala, N., M.H., Ghorbal, A. Lamant and L. Salsac, 1978. Obtention des parois cellulosiques a laide dun detergent: Etude preliminaire de leur composition minerale. C. R. Acad. Sci. Paris (Sir D), 286: 1025-1027.

9:  Heath, R.L. and L. Packer, 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125: 189-198.
CrossRef  |  PubMed  |  Direct Link  |  

10:  Folch, J., M. Lees and G.H.S. Stanley, 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226: 497-509.
PubMed  |  Direct Link  |  

11:  Bligh, E.G. and W.J. Dyer, 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911-917.
CrossRef  |  PubMed  |  Direct Link  |  

12:  Douce, R., 1964. Identification et dosage de quelques glycerophosphatides dans les souches normales et tumorales de scorsoneres cultivees in vitro. C. R. Acad. Sci. Paris, 259: 3066-3068.

13:  Huang, T.C., C.P. Chen, V. Wefler and A. Raftery, 1961. A stable reagent for the Liebermann-Burchard Reaction. Ann. Chem., 33: 1405-1405.

14:  Roughan, P.G. and R.D. Batt, 1968. Quantitative analysis of sulfolipids and glycolipids in plant tissues. Ann. Biochem., 22: 74-88.

15:  Bartlett, G.R., 1959. Phosphorus assay in column chromatography. J. Biol. Chem., 234: 466-468.

16:  Cathala, N. and L. Salsac, 1975. Absorption du cuivre par les racines de mais (Zea mays L.) et de tournesol (Helianthus annuus L.). Plant Soil, 42: 65-83.

17:  Wu, L., D.A. Thurman and A.D. Bradshaw, 1975. The uptake of copper and its effect upon respiratory processes of roots of copper-tolerant and non-tolerant clones of Agrostis stolonifera. New Phytol., 75: 225-229.
Direct Link  |  

18:  Jarvis, S.C., L.H.P. Jones and M.J. Hopper, 1976. Cadmium uptake from solution by plants and its transport from root to shoots. Plant Soil, 44: 179-191.
Direct Link  |  

19:  Petit, C.M. and S.C. Van De Geijen, 1978. In vivo measurement of cadmium (115 m Cd) transport and accumulation in the stems of intact tomato plants (Lycopersicon esculentum, Mill.). I. Long distance transport and local accumulation. Planta, 138: 137-143.

20:  Hardiman, R.T. and B. Jacoby, 1984. Absorption and translocation of Cd in bush beans (Phaseolus vulgaris L.). Physiol. Plant., 61: 670-674.
CrossRef  |  Direct Link  |  

21:  Florijn, P.J., J.A. Nelemans and M.L. Van Beusichem, 1993. Evaluation of structural and physiological plant characteristics in relation to the distribution of cadmium in maize inbred lines. Plant Soil, 154: 103-109.

22:  Salt, D.E., C.R. Prince, I.J. Pickering and I. Raskin, 1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol., 109: 1427-1433.
Direct Link  |  

23:  Grill, E., E.L. Winnacker and M.H. Zenk, 1985. Phytochelatins: The principal heavy-metal complexing peptides of higher plants. Sciences, 230: 674-676.

24:  Rauser, W.E., 1995. Phytochelatins and related peptides. Structure, biosynthesis and function. Plant Physiol., 109: 1141-1149.
PubMed  |  Direct Link  |  

25:  Mullins, G.L. and L.E. Sommers, 1986. Cadmium and zinc influx characteristics by intact corn (Zea mays L.) seedlings. Plant Soil, 96: 153-164.

26:  Rauser, W.E., 1987. Compartmental efflux analysis and removal of extracellular cadmium from roots. Plant Physiol., 85: 62-65.

27:  Kubota, K., H. Nishizono, S. Suzuki and F. Ishii, 1988. A copper-binding protein in root cytoplasm of Polygonum cuspidatum growing in a metalliferous habitat. Plant Cell Physiol., 29: 1029-1033.

28:  Chan, P.C., O.G. Peller and L. Kesner, 1982. Copper (II)-catalysed lipid peroxidation in liposomes and erythrocyte membranes. Lipids, 17: 331-337.

29:  Girotti, A.W., 1985. Mechanisms of lipid peroxidation. J. Free Radic. Biol. Med., 1: 87-95.

30:  Halliwell, B. and J.M. Gutteridge, 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 219: 1-14.
PubMed  |  

31:  Fernandes, A., M.L. Mira, MS. Azevedo and C. Manso, 1988. Mechanisms of hemolysis induced by copper. Free Radic. Res. Commun., 4: 291-298.

32:  Sandman, G. and P. Boger, 1980. Copper-mediated lipid peroxidation process in photosynthetic membranes. Plant Physiol., 66: 797-800.
Direct Link  |  

33:  Zhang, G., J.J. Slaski, D.J. Archambault and G.J. Taylor, 1996. Aluminum-induced alteration in lipid composition of microsomal membrane from an aluminum-resistant and aluminum sensitive cultivar of Triticum aestivum. Physiol. Plant., 96: 683-691.
Direct Link  |  

34:  Zhang, G., J.J. Slaski, D.J. Archambault and G.J. Taylor, 1997. Alteration of plasma membrane lipids in aluminum-resistant and aluminum-sensitive wheat genotypes in response to aluminum stress. Physiol. Plant., 99: 302-308.
Direct Link  |  

35:  Palta, J.P., B.D. Whitaker and L.S. Weiss, 1993. Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solanum species. Plant Physiol., 103: 793-803.
PubMed  |  

36:  Uemura, M., R.A. Joseph and P.L. Steponkus, 1995. Cold acclimation of Arabidopsis thaliana, effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol., 109: 15-30.

37:  Harwood, J.L., 1980. Plant Acyl Lipids: Structure, Distribution and Analysis. In: The Biochemistry of Plants. Lipids: Structure and Functions, Stumpf, P.K. and E.E. Conn (Eds.). Academic Press, New York, pp: 1-55.

38:  Kappus, H., 1985. Lipid Peroxidation: Mechanisms, Analysis, Enzymology and Biological Relevance. In: Oxidative Stress, Sies, H. (Ed.). Academic Press, London, pp: 273-310.

39:  Gora, L. and H. Clijsters, 1989. Effects of Copper and Zinc on the Ethylene Metabolism. In: iochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants, Clijsters, H., M. De Proft, R. Marcel and M. Van Poucke (Eds.). Kluwer Academic Publishers, Dordrecht, Netherlands, pp: 219-228.

40:  Thompson, Jr. G.A., 1992. The Regulation of Membrane Lipid. CRC Press, Boca Raton, Florida.

41:  Graham, R.D., 1981. Absorpion of Copper by Plant Roots. In: Copper in Soils and Plants, Loneragan, J.F., A.D. Robson and R.D. Graham (Eds.). Academic Press, New York, USA., pp: 141-163.

©  2021 Science Alert. All Rights Reserved