Subscribe Now Subscribe Today
Research Article
 

Germination Response of Bacillus subtilis div Mutants to ALA and AGFK System



Tanveer Zahra Mirza , Asama Mahmood , Anjum Nasim Sabri and Shahida Hasnain
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

The present study deal with the germination analysis of spores of different div mutants (divI, divII, divIV and divV) of Bacillus subtilis in ALA and AGFK systems and the relationship of these mutations with ger genes. Eight B. subtilis strains PY79 (wild type) and 07 different div mutants were the subject of this study. All div mutant strains produce germination defective spores. Their germination response was analyzed in both ALA and AGFK systems as well as in the presence of glucose, fructose and combination of both in ALA system. Inhibition effects of HgCl2 and NaN3 and reversal by mercaptoethanol and aqueous washing, respectively, were studied. On the basis of these results 1A292 (div IVB), 1A314-(div V) and 1A315(div V) were aligned with gerD, gerA and gerC mutations, respectively. Peptidoglycan components (hexoamines, techoic acid, diaminopimelic acid) of germination defective spores exhibit variation from wild type, hence changes in wall composition leads to defects in cell division and then spore germination. These studies support our earlier finding (the bases of this project) that div mutants (previously div IVA which was aligned to gerB , now div IVB and div V) exhibit pleiotrophic effects.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Tanveer Zahra Mirza , Asama Mahmood , Anjum Nasim Sabri and Shahida Hasnain , 2005. Germination Response of Bacillus subtilis div Mutants to ALA and AGFK System. Pakistan Journal of Biological Sciences, 8: 1411-1419.

DOI: 10.3923/pjbs.2005.1411.1419

URL: https://scialert.net/abstract/?doi=pjbs.2005.1411.1419

REFERENCES
1:  Stragier, P. and R. Losick, 1996. Molecular genetics of sporulation in Bacillus subtilis. Ann. Rev. Genet., 30: 297-341.

2:  Atrih, A., P. Zollner, G. Allmaier, M.P. Williamson and J.S. Foster, 1998. Peptidoglycan structural dynamics during germination of Bacillus subtilis 168 endospores. J. Bacteriol., 180: 4603-4612.

3:  Moir., A. and D.A. Smith, 1990. The genetics of bacterial spore germination. Ann. Rev. Microbiol., 44: 531-553.

4:  Venkatasubramanian, P. and K. Johnstone, 1993. Biochemical analysis of germination mutants to characterize germinant receptors of Bacillus subtilis. J. Gen. Microbiol., 139: 1921-1926.

5:  Nanninga, N., 1998. Morphogenesis of Escherichia coli. Microbiol. Mol. Biol. Rev., 62: 110-129.

6:  Holtje, J.V., 1998. Growth of stress bearing and shape maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev., 62: 181-203.

7:  Patron, J.M. and D.L. Popham, 2000. Structural analysis of B. subtilis spore peptidoglycan during sporulation. J. Bacteriol., 182: 4491-4499.

8:  Popham, D.L., M.E. Gilmore and P. Setlow, 1999. Role of low molecular weight penicillin-binding proteins in Bacillus subtilis spores peptidoglycan synthesis and spore properties. J. Bacteriol., 181: 126-132.

9:  Sammons, R.L., A. Moir and D.A. Smith, 1981. Isolation and properties of spore germination mutants of Bacillus subtilis 168 deficient in the initiation of germination. J. Gen. Microbiol., 124: 229-241.

10:  Popham, D.L., J. Helin, C.E. Costello and P. Setlow, 1996. Analysis of the peptidoglycan structure of Bacillus subtilis endospores. J. Bacteriol., 178: 6451-6458.

11:  Sadaie, Y., H. Takamatsu, K. Nakamura and K. Yamane, 1991. Sequencing reveals similarity of the wild type div+gene of the Bacillus subtilis to the Escherichia coli secA gene. Gene, 98: 101-105.
PubMed  |  

12:  Beall, B. and J. Lutkenhaus, 1989. Nucleotide sequence and insertional inactivation of Bacillus subtilis gene that affect cell division sporulation and temperature sensitivity. J. Bacteriol., 171: 6821-6834.

13:  Youngman, P.J., J.B. Perkins and R. Losicks, 1983. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc. Nat. Acad. Sci., USA., 80: 2305-2309.

14:  Gerhardt, P., R.G.E. Murray, W.A. Wood and N.R. Krieg, 1994. Methods for General and Molecular Bacteriology. 2nd Edn., American Society for Microbiology, Washington, DC., ISBN-10: 1555810489.

15:  Moir, A., 1981. Germination properties of a spore coat-defective mutant of Bacillus subtilis. J. Bacteriol., 146: 1106-1116.
PubMed  |  Direct Link  |  

16:  Venkatasubramanian, P. and K. Johnstone, 1989. Biochemical analysis of the Bacillus subtilis 1604 spore germination response. J. Gen. Microbiol., 135: 2723-2733.

17:  Dion, P. and J. Mandelstam, 1980. Germination properties as a marker events characterizing later stages of Bacillus subtilis spore formation. J. Bacteriol., 141: 786-792.

18:  Hancock, I.C., 1994. Analysis of Cell Wall Constituents of Gram Positive Bacteria. In: Chemical Methods in Prokaroytic Systematics, Goodfellow, M. and A.G.O. Donnell (Eds.). John Wiley and Sons, New York.

19:  Ames, B.N., 1966. Assay of inorganic phosphate total phosphate and phosphates. Meth. Enzymol., 8: 116-118.

20:  Work, E., 1957. Reaction of α Ediaminopimelic acid and its homologous with ninhydrin in acid solution. Biochem. J., 67: 417-423.

21:  Sabri, A.N. and S. Hasnain, 1992. Identification of hybrid plasmid capable of reverting spore forming ability of B. subtilis divIVA mutant strain. Pak. J. Zool., 24: 321-327.

22:  Alystyne, D.V. and M.I. Simon, 1971. Division mutants of Bacillus subtilis isolation and PBSI transduction of division specific marker. J. Bacteriol., 108: 1366-1379.

23:  Cook, W.R. and L.T. Rothfield, 1994. Development of the cell division site in Ftsa filaments. Mol. Microbiol., 14: 497-503.

24:  Cano, D.A., C. Mouslim, J.A. Ayala, F.G.D. Portillo and J. Casadesus, 1998. Cell division inhibition in Salmonella typhimurium histidine constitutive strains an FtsI like defect in the presence of wild type pencillin binding protein 3 levels. J. Bacteriol., 181: 5231-5234.

25:  Sabri, A.N. and S. Hasnain, 1996. Spore germination analysis of Bacillus subtilis divIVA mutant strain in ALA and AGFK system. Pak. J. Zool., 28: 213-224.

26:  Sabri, A.N. and S. Hasnain, 1994. Temperature effects on cell morphology of DivIVA+ and DivIVA - B. subtilis. Pak. J. Zool., 26: 149-161.

27:  Miyata, S., R. Moriyama, N. Miyahara and S. Makino, 1995. A gene (SleC) encoding a spore cortex lytic enzyme from clostridium perfringens S40 spores cloning sequence analysis and molecular characterization. Microbiology, 141: 2643-2650.

28:  Moir, A., 1992. Compatmentalised Gene Expression During Bacillus subtilis Sporulation. In: Prokaryotic Structure and Function a New Perspective Mohan, Dow, S.C. and J.A. Coles (Eds.). The Bath Press, Bath, Avon, pp: 275-296.

29:  Sabri, A.N. and S. Hasnain, 1997. Analysis of some cell wall constituents of vegetative cells and spores of DivIVA+ DivIVA strains of Bacillus subtilis. Proc. Pak. Cong. Zool., 17: 211-223.

30:  Archibald, A.R., K. Glassey, R.S. Green and W.K. Lang, 1989. Cell wall composition and surface properties in Bacillus subtilis anomalous effect of incubation temperature on the phage binding properties of bacteria containing varied amounts of teichoic acid. J. Gen. Microbiol., 135: 667-673.

31:  Salton., M.R.J. and B. Marshall, 1959. The composition of the spore wall and the wall of vegetative cells of Bacillus subtilis. J. Gen. Microbiol., 21: 415-420.

32:  Briehl, M., H.M. Pooley and D. Karamata, 1989. Mutant of Bacillus subtilis 168 thermosensitive for growth and wall teichoic acid synthesis. J. Gen. Microbiol., 135: 1325-1334.

33:  Favre, D., N.L. Mendelson and J.J. Thwaites, 1986. Relaxation motion induced in Bacillus subtilis macrofibres by cleavage of peptidoglycan. J. Gen. Microbiol., 132: 2377-2385.

34:  Leduc, M., C. Frehel, E. Siegel and J.V. Heijnoort, 1989. Multilayerd distribution of peptidoglycan in the periplasmic space of Escherichia coli. J. Gen. Microbiol., 135: 1243-1254.

35:  Nanninga, N., F.B. Wientjes, E. Mulder and C.C. Woldringh, 1992. Envelop Growth in Escherichia coli. Spatial and Temporal Organisation. In: Prokaryotic Structure and Function, Mohan, S., C. Dow and J.A. Coles (Eds.). The Bath Press, Bath, Avon.

36:  Shohayeb, M. and T. Chopra, 1987. Mutations affecting penicillin binding proteins 2a 2b abd 3b in Bacillus subtilis alter cell shape and peptidoglycan metabolism. J. Gen. Microbiol., 133: 1733-1742.

37:  Chen, P.S., J.Y. Toribara and H. Warner, 1956. Microdetermination of phosphorus. Anal. Chem., 28: 1756-1758.
CrossRef  |  Direct Link  |  

©  2021 Science Alert. All Rights Reserved