Subscribe Now Subscribe Today
Research Article

Efficacy of Some Microbial Control Agents Against Cabbage Pests in Egypt

M.M Sabbour and A.F. Sahab
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

The role of some microbial control agents were tested against the insect pests, which infect the cabbage plants in the laboratory, in the green house and in the field. The results showed that the diamondback moth, the cabbageworm and beet armyworm were very susceptible to the microbial control agents used (Bacillus thuringiensis, Beauveria bassiana and Metarhizium anisopilae). The LC50 recorded were 121, 90 and 61 μg mL-1 after treated the piers rapae, Plutella xylostella and Spodoptera exigua with different concentrations of B. thuringiensis, under laboratory conditions, respectively. In addition, the LC50 recorded were 122, 98 and 101 after treatments of the plant in the green house to last insects, respectively. The cabbage pests could be control by the fungi B. bassiana and M. anisopilae under laboratory conditions, in the green house and in the field. The percentage of infestation reached to 20, 15 and 21% of the P. xylostella, P. rapae and S. exigua, respectively after 90 days of treatment with M. anisopilae and 21, 20 and 21% after treatment with B. bassiana to the same last insects after 90 days.

Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

M.M Sabbour and A.F. Sahab , 2005. Efficacy of Some Microbial Control Agents Against Cabbage Pests in Egypt . Pakistan Journal of Biological Sciences, 8: 1351-1356.

DOI: 10.3923/pjbs.2005.1351.1356


1:  Fast, P.G., 1981. The Crystals Toxin of Bacillus thuringiensis. In: Microbial Control of Pests and Mites, Burgus, H.D. and N.W. Hussey (Eds.). Academic Press, New York, pp: 223.

2:  McCoy, C.W., R.A. Samaon and D.G. Boucias, 1988. Entomogenous Fungi. In: Hand Book of Natural Pesticides Microbial Pesticides Part A, Ignoffo, C.M. and N.B. Mandava (Eds.). CRC Press, Boca Raton, FL., pp: 151-236.

3:  Quintela, E.D. and C.W. McCoy, 1997. Effect of imidacloprid on development locomotory response and survival of first instars of Diaprepes abbreniatus. J. Econ. Entomol., 90: 988-995.

4:  Boucias, D.G., M.S.T. Abbas, L. Rathboneanel and L.N. Hostetter, 1987. Predators as potential dispersal agents of nuclear polyhedrosis virus of Anticarsia gemmatalis. Entomophaga, 32: 97-108.

5:  McCoy, C.W., 1995. Entomopathogenes in the development of an IPM strategy for citrus root weevil larvae in soil. Proceedings of the USDA, (USDA'95), United States Department of Agriculture, pp: 9-12.

6:  Quintela, E.D. and C.W. McCoy, 1998. Conidial attachment of Metarhizium anisopilae and Beauveria bassiana to the larval cuticle of diaprepes abbreviatus treated with imidacloprid. J. Ivert. Pathol., 72: 220-230.

7:  Quintela, E.D. and C.W. McCoy, 1998. Development of diaprepes abbreviatus on artificial and citrus root substrates. J. Econ. Entomol., 91: 1173-1179.

8:  McCoy, C.W., W.D.I. Shapiro and L.W. Ducan, 2000. Application and Evaluation of Entomopathogens Application and Evaluation of Entomopathogens for Citrus Pest Control. In: Field Manual of Techniques in Invertebrate Pathology Application and Evaluation of Pathogens for Insects and Other Invertebrate Pests, Lacy, L.A. and H.K. Kaya (Eds.). Kluwer Academic Publishers, Dordrecht, pp: 33.

9:  Fatma, A.A., M.A. Shoeb and M.S.T. Abbas, 2003. Evaluations of agerion, a commercials formulations of Bacillus thuringiensis against certain insect pests of cabbages. Egypt J. Biol. Pest Cont., 13: 115-117.

10:  Singh, M.K., S.V.S. Raju and H.N. Singh, 2003. Laboratory bioassay of Bacillus thuringiensis formulations against Plutella xylostella. Ind. J. Entomol., 65: 86-93.

11:  Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18: 265-267.
CrossRef  |  Direct Link  |  

12:  Hafez, A.A., S.H. Taher and S.M.A. Halim, 1994. Effect of two formulations of Bacillus thuringiensis on Pectinophora gosspiella treated in egg stage. Egypt J. Biol. Pest Control, 4: 89-95.

13:  Zhang, G.M. and S.S. Liu, 1997. Effect of Bacillus thuringiensis on the egg stage of Plutella xylostella. Chinese J. Biol. Cont., 13: 53-56.

14:  Tang, J.D., A.M. Shlton, J.V. Rie, S.D. Roeck, W.J. Moar, R.T. Roush and M. Peferoen, 1996. Toxicity of Bacillus thuringiensis spores and crystals to resistant diamondback moth Plutella xylostella. Applied Environ. Microbiol., 62: 564-569.

15:  Kares, E.A., A.A.E. Mursi, A.A.A. Rahman and M.B.R.E. Mandrawy, 1992. Efficacy of bioinsecticides (Bactospine) on larvae of Artogeia rapae. Egypt J. Biol. Pest. Cont., 2: 123-130.

16:  Higuchi, K., H. Saitoh, E. Mizuki, T. Ichimatsu and M. Ohba, 2000. Larval susceptibility of the diamondback moth Plutella xylostella to Bacillus thuringiensis isolated in Japan. Microbiol. Res., 155: 23-29.

17:  Pokharkar, D.S., A.B. Hadapada and T.R. Puaranik, 2002. Bioassay and persistence of Bacillus thuringiensis against Plutella xylostella on cabbage. Ann. Plant Protec. Sci., 10: 1-4.

18:  Imai, K. and Y. Mori, 1999. Levels inheritance and stability of resistance to Bacillus thuringiensis formulations in a field populations of Plutella xylostella from Thailand. Applied Entomol. Zool., 34: 23-29.

19:  Maruyama, T., H. Hama and S. Asano, 1999. Establishment and maintenance of high resistance to Bacillus thuringiensis formulations in Plutella xylostella. Jap. J. Applied Entomol. Zool., 43: 7-120.
Direct Link  |  

20:  Sayyed, A.H., J. Ferre and D.J. Wright, 2000. Mode of inheritance and stability of resistance to Bacillus thuringiensis to Plutella xylostella populations from Malysia. Pest. Manage. Sci., 56: 743-748.
Direct Link  |  

21:  Yu, D., Z. Zhan and B. Tang, 1999. Advances in studies on resistance to Bacillus thuringiensis in Plutella xylostella and its management. Natural Enemies Insects., 21: 21-27.

22:  Justin, G.G.L., R.P. Soundararajan; R.J. Rabindra and M. Swamiappan, 2001. Dosage and time mortality response of diamondback moth Plutella xylostella to Bacillus thuringiensis formulations. Pest Manage. Econ. Zool., 9: 109-113.

23:  Mansour, H.A.M., 1999. Studies in the entomopathogenic fungus Beauveria bassiana as biological control agents for some economically important insects. Ph.D. Thesis, Faculty of Agriculture, Kafer El-Sheikh, Tanta University, pp: 198.

24:  Sufty, R.E., I.A.E. Rahman and W.A.A.E. Rahim, 1982. Testing of Beauveria bassiana (Balsamo.) Vull. on certain larval instars of the cotton leafworm Spodoptera littoralis (Boisd.). J. Agric. Res. Tanta. Univ., 8: 275-282.

25:  Hung, S.Y. and D.G. Boucias, 1992. Influence of Beauveria bassiana of the cellular defense response of the beet armyworm Spodoptera exigua. J. Invert. Pathol., 60: 152-158.

26:  Gawad, H.A.S.A.E., 2000. Studies on entomopathogenic fungi for controlling certain Lepidopterous insects on corn. Ph.D. Thesis, Faculty of Agricultre Cairo. University, Egypt, pp: 231.

27:  Baker, H.A., 1997. Metarhizium anisopilae (Metsch.) Sorokin a potential entomogenous fungus for controlling cotton leafworm Spodoptera littoralis (Boised.) in clover fields. Egypt J. Boil. Pest Cont., 7: 111-114.

28:  Hsiao, W.F. and R. Javedan, 2001. Physiological characteristics of Beauveria bassiana and its UV tolerant variants. Proceedings of the SIP 34th Annual Meeting Noordwijkerhout, Aug. 25-30, Netherlands, pp: 35-35.

29:  Sabbour, S. and S.A.E. Aziz, 2002. Efficacy of some botanical oils formulated with microbial agents against the cotton leafworm and greasy cutworm attaching cotton plants. Bull. Entomol. Soc. Egypt, 28: 135-151.

30:  Zhang, J. and E. Groden, 1995. Pathogenicity of two strains of Beauveria bassiana for control Leptinotatsa decemlineata (Say) (Coleoptera Chrysomelidae). Proceedings of the 28th Annual Meeting of the Society for Invert, (AMSI'95), USA., pp: 72-72.

31:  Hem, S., R. Ahmed and H. Saxena, 1997. 1997. Field evaluations of Beauveria bassiana (Balsamo) against Helicoverpa armigera (Hubner) infecting chickpea. J. Biol. Cont., 1: 93-96.

32:  Ismail, A.I. and M. Sabbour, 2002. The role of certain terpenes in increasing the efficacy of microbial insecticides against cotton bollworms. J. Egypt Ger. Soc. Zool., 2: 1-12.

33:  Magda, S.M., 2002. Evaluation studies of some bio control agents against corn borer in Egypt. Ann. Agric. Sci. Ain Shames Univ. Cairo., 47: 1033-1043.

34:  Tanada, Y. and H.K. Kaya, 1993. Insect Pathology. 1st Edn., Academic Press, San Diego, California, pp: 348.

35:  Gloriana, A.S., N. Raji, S. Seshadri, S. Janarthana and S. Ignacimuthu, 2000. Entomophathogenes Bacillus thuringiensis ssp. Kurstaki and Beauveria bassiana, to larvae Spodoptera lituralis and Pericallia ricini. Biol. Agric. Hortic., 18: 235-242.

36:  Jayanthi, P.D.K. and K. Padmavathamma, 1996. Effect of microbial agents on different development stages of tobacco caterpillar Spodoptera littura. Ind. J. Pathol. Protec. Res., 20: 102-109.

37:  Khawas, M.A.M.E. and A.E. Gawad, 2002. The efficacy of two plant extracts (Fenugreek and Lupine) and a commercial bioinsecticides (Biofly) on the cotton leafworm Spodoptera littoralis (Boisd.) (Lepidoptera Noctuidae) larvae as a new approach of control. J. Egypt Ger. Soc. Zool., 37: 39-57.

38:  Sufty, R.E., I.A.E. Rahman and W.A.A.E. Rahim, 1982. Testing of Beauveria bassiana (Balsamo.) Vull on certain larval instars of the cotton leafworm Spodoptera littoralis (Boisd.). J. Agric. Res. Tanta. Univ., 8: 275-282.

39:  Negasi, A., B.L. Parker and M. Brownbridge, 1998. Screening and bioassay of entomopathogenic fungi for the control of silverleaf whitfly Bemisia argentifolii. Insect Sci. Applied, 18: 37-44.

40:  Finney, D.J., 1964. Probit Analysis. 2nd Edn., Cambridge University Press, Cambridge, pp: 318.

©  2021 Science Alert. All Rights Reserved