Subscribe Now Subscribe Today
Research Article
 

Determination of Benzidine Using the Analyte Pulse Perturbation Technique in BZ Oscillating Chemical System



Jinzhang Gao , Kanjun Sun , Wu Yang , Fuwei Yang and Guohu Zhao
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

A simple and sensitive analytical method for the determination of benzidine by the perturbation caused by different amounts of benzidine on the Belousov-Zhabotinskii (BZ) oscillating chemical system involving the Ce (IV)-catalyzed reaction between potassium bromate and malonic acid in a acidic medium is proposed. Results show that a linear relationship between the change in the oscillation amplitude and the concentration of benzidine was existed. The calibration curve is linearly proportional to the concentration of benzidine over the range 3.5x10-9-1x10-4 M, with the regression coefficient is 0.9975. The optimum condition for the determination has been chosen. Influence of temperature and reaction variables were investigated in detail and the possible mechanism caused by the adding of benzidine on the chemical oscillating system was also discussed.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Jinzhang Gao , Kanjun Sun , Wu Yang , Fuwei Yang and Guohu Zhao , 2004. Determination of Benzidine Using the Analyte Pulse Perturbation Technique in BZ Oscillating Chemical System. Pakistan Journal of Biological Sciences, 7: 1721-1726.

DOI: 10.3923/pjbs.2004.1721.1726

URL: https://scialert.net/abstract/?doi=pjbs.2004.1721.1726

REFERENCES
1:  Jimenez-Prieto, R., M. Silva and D. Perez-Bendito, 1998. Approaching the use of oscillating reactions for analytical monitoring. Analyst, 123: 1-8.

2:  Gao, J.Z., 2002. Application of oscillating chemical reaction in analytical chemistry. J. Northwest Normal Univ. (Nat. Sci.), 38: 100-105 (In Chinese).

3:  Jimenez-Prieto, R., S. Manuel and D. Perez-Bendito, 1995. Analyte pulse perturbation technique: A tool for analytical determinations in far-from-equillibrium dynamic systems. Anal. Chem., 67: 729-734.
Direct Link  |  

4:  Gao, J.Z., J. Ren, W. Yang, X. Liu and H. Yang, 2003. Determination of caffeine using oscillating chemical reaction in a CSTR. J. Pharma. Biomed. Anal., 32: 393-400.

5:  Gao, J.Z., H. Yang, X.H. Liu, J. Ren, Q.Z. Li and J.W. Kang, 2002. Determination of glutamic acid by an oscillating chemical reaction using the analyte pulse perturbation technique. Talanta, 57: 105-114.

6:  Gao, J.Z., H. Yang, X.H. Liu, J. Ren, X.Q. Lu, J.G. Gou and J.W. Kang, 2001. Kinetic determination of ascorbic acid by the BZ oscillating chemical system. Talanta, 55: 99-107.

7:  Gao, J.Z., J. Ren, W. Yang, X. Liu, H. Yang, Q. Li and H. Deng, 2002. Kinetic determination of hydroquinone by a Belousov-Zhabotinskii oscillating chemical reaction. J. Electroanal. Chem., 520: 157-161.
Direct Link  |  

8:  Nanqin, G., A. Congjun, L. Yi and C. Ruxiu, 1998. Determination of hexacyanoferrates based on the diacetone-BrO3-Mn-H2SO4 chemical oscillatory reaction. Analystica, 123: 2395-2397.
CrossRef  |  Direct Link  |  

9:  Liu, X., H. Yang, J.Z. Gao, Y. Meng and X. LU, 2001. Effect of fluoride on the belousov-zhabotinsky oscillating reaction. Chinese J. Anal. Chem., 29: 1318-1318.

10:  Li, Q., X. Liu, J. Ren, H. Yang and J.Z. Gao, 2002. Deng Hualing, Effect of sodium diphenylamine sulfonate on the B-Z oscillating reaction. J. Northwest Normal Univ., 38: 51-51.

11:  Jimenez-Prieto, R., M. Silva and D. Perez-Bendito, 1997. Application of oscillating reaction-based determinations to the analysis of real samples. Analyst, 122: 287-292.
Direct Link  |  

12:  Jimenez-Prieto, R., M. Silva and D. Perez-Bendito, 1997. Analytical assessment of the oscillating chemical reaction by use chemiluminescence detection. Talanta, 44: 1463-1472.
PubMed  |  Direct Link  |  

13:  Ke, Z., M. Wanhong, C. Ruxiu, L. Zhixin and G. Nanqin, 2000. Determination of riboflavin by the perturbation of active oxygen on a oscillating reaction. Analyt. Chimica Acta, 413: 115-123.

14:  Strizhak, P.E., O.Z. Didenko and T.S. Ivashchenko, 2001. Determination of traces thallium the transient chaotic regime in the belousov-zhabotinskii oscillating chemical reaction. Analyt. Chimica Acta, 428: 15-21.
Direct Link  |  

15:  Strizhak, P.E. and V.O. Khavrus, 2000. Determination of gases (NO, CO, Cl2) using mixed-mode regimes in the belousov Bzhabotinskii oscillating chemical reaction. Talanta, 51: 935-947.

16:  Jimenez-Prieto, R., M. Silva and D. Perez-Bendito, 1996. Simultaneous determination of gallic acid and resorcinol based on an oscillating chemical reaction by the analyte pulse perturbation technique. Anal. Chimica Acta, 334: 323-330.
CrossRef  |  

17:  Koros, E., M. Orban and Z.S. Nagy , 1973. Periodicity in the rate of heat evolution during the temporal oscillation in the 2,4-pentanedione-bromate-catalyst system. J. Phys. Chem., 77: 3122-3123.
CrossRef  |  

18:  Jimenez-Prieto, R., M. Silva and D. Perez-Bendito, 1996. Determination of gallic acid by an oscillating chemical reaction using the analyte pulse perturbation technique. Anal. Chimica Acta, 321: 53-60.
CrossRef  |  

19:  Field, R.J., K. Endre and R.M. Noyes, 1972. Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. J. Am. Chem. Soc., 94: 8649-8664.
CrossRef  |  Direct Link  |  

20:  Noyes, R.M., 1980. Chemical oscillations and instabilities. 39. A generalized mechanism for bromate-driven oscillators controlled by bromide. J. Am. Chem. Soc., 102: 4644-4649.
CrossRef  |  Direct Link  |  

©  2021 Science Alert. All Rights Reserved