Subscribe Now Subscribe Today
Research Article
 

Effect of Carbon and Nitrogen Sources on the Production of Reducing Sugars, Extra-cellular Protein and Cellulolytic Enzymes by Two Cellulolytic Bacterial Isolates



M.A. Kashem , M.A. Manchur , M.S. Rahman and M.N. Anwar
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Two thermophilic cellulolytic bacterial isolates were tested to determine the effect of carbon and nitrogen sources on the production of extra-cellular proteins, reducing sugars and cellulolytic enzymes. Lactose was found to be the most potential carbon source for Avicelase (342.52 U mL-1) and ß-glucosidase (256.89 U mL-1) activity where as NH4Cl was found to be the potential nitrogen source for CMCase (144.68 U mL-1) activity.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

M.A. Kashem , M.A. Manchur , M.S. Rahman and M.N. Anwar , 2004. Effect of Carbon and Nitrogen Sources on the Production of Reducing Sugars, Extra-cellular Protein and Cellulolytic Enzymes by Two Cellulolytic Bacterial Isolates. Pakistan Journal of Biological Sciences, 7: 1660-1663.

DOI: 10.3923/pjbs.2004.1660.1663

URL: https://scialert.net/abstract/?doi=pjbs.2004.1660.1663

REFERENCES
1:  Beguin, P. and J.P. Aubert, 1994. FEMS, the biological degradation of cellulose. Microbiol. Rev., 13: 25-58.

2:  Linko, M., 1977. An evaluation of enzymatic hydrolysis of cellulosic materials. Adv. Biochem. Eng., 5: 25-48.

3:  Updegraff, D.M., 1971. Utilization of cellulose from waste paper by Myrithecium verrucaria. Biotechnol. Bioeng., 13: 77-79.

4:  Gray, K.R., K. Sherman and A.J. Biddlestone, 1971. A review of composting process. Biochemical, 6: 32-32.

5:  Hofsten, B.V., 1972. Microbial Conversion of Waste Product: Waste Recovery by Microorganisms. UNESCO, Kuala Lumpur, pp: 1-18.

6:  Grajek, W., 1987. Comperative studies on the production of cellulases by thermophilic fungi in submerged and solid state fermentation. Applied Microbiol. Biotechnol., 26: 126-129.

7:  Stutzenberger, F.J., 1971. Cellulase production by Thermomonospora curvata isolated from municipal solid waste compost. J. Applied Microbiol., 22: 147-152.
PubMed  |  

8:  Chowdhury, N.P., P. Gray and N.W. Dunn, 1980. Saccharification of sugarcane bagasse by an enzyme preparation from Cellulomonas. Biotechnol. Lett., 2: 427-428.

9:  Alexander, M., 1961. Introduction to Soil Microbiology. Ithace Publisher, New York, pp: 163-180.

10:  Buchanan, R.E. and N.E. Gibbons, 1974. Bergey's Manual of Determinative Bacteriology. 8th Edn., Williams and Wilkins Co., Baltimore, MD., pp: 747-842.

11:  Winstead, N.N., 1963. Production of pectinolytic and cellulolytic enzymes by cucurbit anthracnose fungi. Phytopathology, 53: 961-964.

12:  Nelson, N., 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem., 153: 375-380.
Direct Link  |  

13:  Mahadevan, A. and R. Sridhar, 1982. Methods in Physiological Plant Pathology. Sivakami Publications, Madras, pp: 5-8.

14:  Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall, 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-275.
PubMed  |  Direct Link  |  

15:  Henriette, C., S. Zinebi, M.F. Aumaitre, E. Petitdemange and H. Petitdemange, 1993. Protease and lipase production by a strain of Serratia marcescens. J. Ind. Microbiol., 12: 129-135.
CrossRef  |  Direct Link  |  

16:  Sasaki, H., Y. Kamagata, S. Takao, P. Matangkasombut and A. Bhumiratana, 1983. Selection and classifiction of active cellulose decomposing fungi. Microb. Utilization Renewable Resour., 3: 65-76.

17:  Hossain, F.M.M., M.M. Rahman, N. Chowdhury and M.A. Malek, 1999. Production of extra-cellular carboxymehtyl cellulase and cellobiase by a thermophilic Bacillus sp. Bangladesh J. Microbiol., 16: 115-125.

18:  Huq, M., M.M. Rahman, A.R. Khan and M.A. Malek, 2002. Production of extra-cellular carboxymehtyl cellulase and Avicelase by a sawdust degrading Streptomyces sp. Bangladesh J. Microbiol., 19: 1-6.

19:  Alam, M.Z., 2004. Study of five cellulolytic microorganisms and their cellulases. M.Sc. Thesis, Chittagong University Bangladesh.

20:  Mandels, M. and E.T. Reese, 1957. Induction of cellulase in Trichderma viride as infuenced by carbon sources and materials. J. Bacteriol., 73: 269-278.
Direct Link  |  

21:  Mendels, M. and E.T. Reese, 1960. Induction of cellulases in fungi by cellobiose. J. Bacteriol., 79: 816-826.

22:  Martin, G.M. and B. Eberhart, 1966. Regulation of cellulase and cellobiase in Neurospora crassa. Biochem. Biophys. Res. Commun., 24: 782-785.

23:  Nisizawa, T., H. Suzuki and K. Nisizawa, 1972. Catabolic repression of cellulase formation by Trichoderma viridae. J. Biochem., 71: 999-1007.

24:  Breuli, C. and D.J. Krushner, 1976. Celluase induction and the use of cellulose as a preferred growth substrate by Celvibrio gilvus. Can. J. Microbiol., 22: 1776-1781.

25:  Donald, J.G., J. Gomes, M.M. Hoq and W. Steiner, 1995. Induction of cellulose degrading enzymes in Thermoascus aurantiacus. Bangladesh J. Microbiol., 12: 23-29.

26:  Jaksevse, J.R., L. Majdance and J. Dordevia, 1984. Cellulolytic enzyme biosynthesis. Microbiol. J. (Belgr.), 21: 151-164.

27:  Mandels, M. and J. Weber, 1969. The Production of Cellulases in Cellose and Their Applications. In: Advance Chem. Ser. 95, Gould, R.F. (Ed.). Am. Chem. Soc., Washington, DC. USA., pp: 391-414.

©  2021 Science Alert. All Rights Reserved