Subscribe Now Subscribe Today
Research Article

The Potential for Using Wastewater from Household Scale Fermented Thai Rice Noodle Factories for Cultivating Spirulina platensis

Sopit Vetayasuporn
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

In this study, the influence of various concentrations of wastewater medium, nitrogen, phosphorus, potassium and soda ash (Na2CO3) using batch cultivation for S. platensis growth were examined. It was found that modified wastewater medium, which contains a 1:11 dilution ratio of wastewater, supplemented with 0.09 g L-1 nitrate, 0.59 g L-1 phosphate, 0.18 g L-1 potassium and 3 g L-1 Na2CO3, shows great potential for cultivating S. platensis. The growth of the algae was smooth in the modified culture. Apart from chlorophyll (2.36 mg g-1), approximately 1.0 g L-1 biomass, 59% protein and 14% phycocyanin were detected which was almost identical to that of Zarrouk medium.

Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

Sopit Vetayasuporn , 2004. The Potential for Using Wastewater from Household Scale Fermented Thai Rice Noodle Factories for Cultivating Spirulina platensis. Pakistan Journal of Biological Sciences, 7: 1554-1558.

DOI: 10.3923/pjbs.2004.1554.1558


1:  Henrikson, R., 1994. Microalga Spirulina, Superalimento Del Futuro. Ronore Enterprises. 2nd Edn., Ediciones Urano, Barcelona, Espana, pp: 222.

2:  Otles, S. and R. Pire, 2001. Fatty acid composition of Chlorella and Spirulina microalgae species. JAOAC. Int., 84: 1708-1714.

3:  Hayashi, K., T. Hayashi and I. Kojima, 1996. A natural sulfated polysaccharide, Calcium-Spirulan, isolated from Spirulina platensis: In vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res. Hum. Retroviruses, 12: 1463-1471.

4:  Bhat, V.B. and K.M. Madyastha, 2000. Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: Protection against oxidative damage to DNA. Biochem. Biophys. Res. Commun., 285: 262-266.
CrossRef  |  

5:  Ramirez, D., R. Gonzalez, N. Merino, S. Rodriguez and O. Ancheta, 2002. Inhibitory effects of spiruline in zymozan-induced arthritis in mice. Mediators Inflamm., 11: 75-79.

6:  Mackinney, G., 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem., 104: 315-322.
Direct Link  |  

7:  Boussiba, S. and A.E. Richmond, 1979. Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Arch. Microbiol., 120: 155-159.
CrossRef  |  Direct Link  |  

8:  Ciferri, O., 1983. Spirulina, the edible microorganism. Microbial. Rev., 47: 551-578.
PubMed  |  

9:  Adamsson, M., G. Dave, L. Forsberg and B. Guterstam, 1998. Toxicity identification evaluation of ammonia, nitrite and heavy metals at the Stensund wastewater aquaculture plant, Sweden. Water Sci. Technol., 38: 151-157.
CrossRef  |  

10:  Cohen, Z., 1997. The Chemicals of Spirulina. In: Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology, Vonshak, A. (Ed.). Taylor and Francis Ltd., UK., pp: 175-204.

11:  Fedkovic, Y., C. Astre, F. Pinguet, M. Gerber, M. Ychou and H. Pujoj, 1993. Spiruline et Cancer. In: Spiruline Algue De Vie Musee Oceanographique, Doumenge, F., H.D. Chastel and A. Toulemont (Eds.). Bulletin de l'Institut Oceanographique Monaco, UK., pp: 117-120.

12:  Schwartz, J., E. Flynn and G. Shklar, 1990. The Effect of Carotenoids on the Antitumor Immune Response in vivo and in vitro with Hamster and Mouse Immune Effectors. In: Micronutrients and Immune Functions B Cytokines and Metabolism, Bendich, A., R. Chandra, K. Gerard, A. Cerami and F. Takaku (Eds.). New York Academy of Sciences, New York, pp: 92-109.

13:  Richmond, A., 1992. Mass Culture of Cyanobacteria. In: Biotechnology Handbooks (Photosynthetic Prokaryote), Man, N.H. and N.G. Carr (Eds.). Springer-Verlag, New York, pp: 181-210.

14:  Becker, E.W., 1984. Nutritional Properties of Microalgal Potentials and Constraints. In: Handbook of Microalgal Mass Culture, Richmond, A. (Ed.). CRC Press, Boca Raton, pp: 339-408.

15:  Belay, A., 1997. Mass Culture of Spirulina Outdoors: The Arthrise Arms Experience. In: Spirulina platensis (Arthrospira) Physiology, Cell-Biology and Biotechnology, Vonshak, A. (Ed.). Taylor and Francis, London, pp: 131-158.

16:  Switzer, L., 1980. Spirulina the Whole Food Revolution. Proteus Corporation, USA., pp: 1-69.

17:  Zarrouk, C., 1966. Contribution a l'etude d: Une cyanophycee. Influene de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. et Gardner) Geitler. Ph.D. Thesis, University of Paris, France.

18:  Borowitzka, M., 1992. Algal Growth Media and Sources of Algal Cultures. In: Microalgal Biotechnology, Borowitzka, M. and L. Borowitzka (Eds.). Cambridge University Press, Great Britain, pp: 456-465.

19:  AOAC., 1984. Official Methods of Analysis. 13th Edn., Association of Official Analytical Chemists, Washington, DC., USA., pp: 768-800.

20:  Ayala, F., 1998. Guia sobre el cultivo de Spirulina. Biotecnologia de Microorganismos Fotoautotrofos. Motril, Granada, Espana, pp: 3-20.

©  2021 Science Alert. All Rights Reserved