Subscribe Now Subscribe Today
Research Article
 

Protease Digestion and Role of N-acetyl Galactosamine in the Binding Characteristics of Bacillus thuringiensis Delta-endotoxin ( Cry 1Ac ) to Purified Receptor of Helicoverpa armigera



Kausar Malik and S. Riazuddin
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Proteins synthesized by the bacterium Bacillus thuringiensis are potent insecticides. When ingested by susceptible larvae they rapidly lyse epithelial cell lining of the midgut. The receptor protein in Helicoverpa armigera midgut appeared as single band on Non-SDS-PAGE but on SDS-PAGE. It resolved as two subunits (120kDa, 70kDa). We observed that the sugar N-acetyl galactosamine (GalNAc) showed no effect on binding of CryIAc toxin to receptor protein or in other words, toxin binding to receptor was not inhibited by GalNAc. This finding suggest that GalNAc might be not a component of a Cry1Ac toxin receptor Proteolysis of receptor proteins with trypsin and gut juice of Helicoverpa armigera showed that ~120Kda was digested while, ~70 kDa was trypsin and gut juice resistant and showed binding to CryIAc in ligand blots Proteolysis of receptor protein with pronase and proteinase-K showed digestion of ~120 kDa , ~70kDa and less than 40 kDa bands were appeared.

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Kausar Malik and S. Riazuddin , 2001. Protease Digestion and Role of N-acetyl Galactosamine in the Binding Characteristics of Bacillus thuringiensis Delta-endotoxin ( Cry 1Ac ) to Purified Receptor of Helicoverpa armigera. Pakistan Journal of Biological Sciences, 4: 569-571.

DOI: 10.3923/pjbs.2001.569.571

URL: https://scialert.net/abstract/?doi=pjbs.2001.569.571

REFERENCES

1:  Oltean, D.I., A.K. Pullikuth, H.K. Lee and S.S. Gill, 1999. Partial purification and characterizastion of Bacillus thuringiensis CryIA toxin recepotr A from Heliothis virescens and cloning of the corresponding cDNA. Applied Environ. Microbiol., 65: 4760-4766.
Direct Link  |  

2:  Schnepf, E., N. Crickmore, J. van Rie, D. Lereclus and J. Baum et al., 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev., 62: 775-806.
Direct Link  |  

3:  Garczynski, S.F., V.W. Crim and M.J. Adang, 1991. Identification of putative insect brush border membrane binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Applied Environ. Microbiol., 57: 2816-2820.

4:  Lereclus, D., C. Bourgouin, M.M. Lecadet, A. Klier and G. Rapoport, 1989. Regulation of Procaryotic Development. American Society Microbiology, Washingtion, DC., pp: 255-276

5:  Oddou, P., H. Hartmann and M. Geiser, 1991. Identification and characterization of Heliothis virescens midgut membrane proteins binding Bacillus thuringiensis delta-endotoxin. Eur. J. Biochem., 202: 673-680.

6:  Gill, S.S., E.A. Cowles and P.V. Pietrantonio, 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol., 37: 615-636.

7:  Knowles, B.H., P.J.K. Knight and D.J. Ellar, 1991. N-acetyl galaclosamine is part of the receptor in insect gut epitelia that recognises an insecticidal protein from Bacillus thuringiensis. Proc. R. Soc. Lond. B, 245: 31-35.

8:  Hawkes, R., E. Niday and J. Gordon, 1982. A dot-immunoblotting assay for monoclonal and other antibodies. Anal. Biochem., 119: 142-147.

9:  Chow, E., G.J.P. Singh and S.S. Gill, 1989. Binding and aggregation of the 25-kilodalton toxin of Bacillus thuringiensis subsp. israelensis to cell membranes and alteration by monoclonal antibodies and amino acid modifiers. Applied Environ. Microbiol., 55: 2779-2788.

10:  Heimpel, A.M. and T.A. Angus, 1960. Bacterial insecticides. Bacteriol. Rev., 24: 266-288.
Direct Link  |  

11:  Gupta, B.L., J.A.T. Dow, T.A. Hall and W.R. Harvey, 1985. Electron probe X-ray microanalysis of the effects of Bacillus thuringiensis var kurstaki crystal protein insecticide on ions in an electrogenic K+-transporting epithelium of the larval midgut in the lepidopteran, Manduca sexta, in vitro. J. Cell Sci., 74: 137-152.

12:  Haider, M.Z. and D.J. Ellar, 1987. Analysis of the molecular basis of insecticidal specificity of Bacillus thuringiensis crystal delta-endotoxin. Biochem. J., 248: 197-201.
Direct Link  |  

13:  Hofte, H. and H.R. Whiteley, 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev., 53: 242-255.
Direct Link  |  

14:  Hofte, H., H. de Greve, J. Seurinck, S. Jansens and J. Mahillon et al., 1986. Identification and characterization of Heliothis virescens midgut membrane proteins binding Bacillus thuringiensis-endotoxins. Eur. J. Biochem., 202: 673-680.

15:  Jaquet, F., R. Hutter and P. Luthy, 1987. Specificity of Bacillus thuringiensis delta-endotoxin. Applied Environ. Microbiol., 53: 500-504.

16:  Achuo, E.A., E. Prinseh and M. Hofte, 1984. Lectin-like binding of Bacillus thuringiensis var. kurstaki lepidopteran-specific toxin is an initial step in insecticidal action. FEBS Lett., 168: 197-202.
PubMed  |  

17:  Knowles, B.H. and D.J. Ellar, 1986. Characterization and partial purification of a plasma membrane receptor for Bacillus thuringiensis var. kurstaki lepidopteran-specific delta-endotoxin. J. Cell Sci., 83: 89-101.

18:  Luthy, P., 1980. Insecticidal toxins of Bacillus thuringiensis. FEMS Microbiol. Lett., 8: 1-7.
Direct Link  |  

19:  Walters, F.S., C.A. Kulesza, A.T. Philips and L.H. English, 1994. A stable oligomer of Bacillus thuringiensis delta-endotoxin, CryIIIA. Insect Biochem. Mol. Biol., 24: 963-968.
Direct Link  |  

©  2021 Science Alert. All Rights Reserved