Subscribe Now Subscribe Today
Research Article

Analysis of Genome Differentiation Between High Toxin and Low Toxin Accessions of Lathyrus sativus Using RAPD Markers

M. Qayyum Khan and S. Abdul Majid
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

The random amplified polymorphic DNA (RAPD) markers were used to study the nature of genome differentiation between natural populations of L. sativus. The degree of band sharing was used as a criterion to calculate the genetic distance and to construct phylogenetic trees. The 28 populations from Pakistan, India and Ethiopia differed in the amount of β- N - oxalyl -L- a, β- diamino propionic acid (β-ODAP) in their kernels. Irrespective of their geographical diversity high toxin and low toxin varieties clustered into genetic groups in the phylogenetic tree. The results would suggest that the variation between populations in the neurotoxin content is governed by genetic factors and has occurred for this trait during evolution

Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

M. Qayyum Khan and S. Abdul Majid , 2001. Analysis of Genome Differentiation Between High Toxin and Low Toxin Accessions of Lathyrus sativus Using RAPD Markers. Pakistan Journal of Biological Sciences, 4: 1526-1530.

DOI: 10.3923/pjbs.2001.1526.1530


1:  Caetano-Anolles, G., B.J. Bassam and P.M. Gressoff, 1991. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology, 9: 553-557.
CrossRef  |  Direct Link  |  

2:  Campbell, C.G. and C.J. Briggs, 1987. Registration of low neurotoxic content Lathyrus germplasm LS 8246. Crop Sci., 27: 821-821.

3:  Campbell, C.G., R.B. Mehra, S.K. Agrawal, Y.Z. Chen and A.M. Monheim et al., 1994. Current Status and Future Strategy in Breeding Grasspea (Lathyrus sativus). In: Expanding the Production and use of Cool Season Food Legumes, Muehlbauer, S.J. and W.J. Kaiser (Eds.). Kluwer Academic Publishers, Dordrecht, The Netherlands.

4:  Chalmers, K.J., U.M. Baraua, C.A. Hackett, W.T.B. Thomas, R. Waugh and W. Powell, 1993. Identification of RAPD markers linked to genetic factors controlling the milling energy requirement of barley. Theor. Applied Genet., 87: 314-320.
CrossRef  |  Direct Link  |  

5:  Delourme, R., A. Bouchereau, N. Hubert and M. Renard, 1994. Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theoret. Applied Genet., 88: 741-748.

6:  Felsentein, J., 1993. PHYLIP (Phylogenetic Inference Package) Version 3.5c, University of California Press, Berkeley, CA., USA.

7:  Fitch, W.M. and E. Margoliash, 1967. Construction of phylogenetic tree. Sciences, 155: 279-284.

8:  Getachew, A., 1992. Developmental variation in the biosynthesis of neurotoxin in L. sativus. M.Sc. Thesis, University of Wales, Aberystwyth.

9:  Hu, J.G. and C.F. Quiros, 1991. Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep., 10: 505-511.
CrossRef  |  

10:  Khan, M.Q., S D.A. Gardezi and R.K.J. Narayan, 2000. Study of phylogenetic relationships between different species of genus Lathyrus using RAPD markers. Sarhad J. Agric., 16: 411-421.

11:  Khawaja, H.I.T., U. Ihsan and K. Iftikhar, 1996. Prevalence of lathyrism in Pakistan: Lathyrus sativus and lathyrism in Pakistan. Proceedings of the 1st and 2nd Lathyrus Conferences, (LC'96), National Agriculture Research Center, Islamabad, pp: 5-11.

12:  Ressler, C., P.A. Redstone and R.H. Esenberg, 1961. Isolation and identification of neuroactive factor from Lathyrus latifolius. Science, 134: 180-190.

13:  Rowland, L.J. and A. Levi, 1994. RAPD base genetic linkage map of blueberry derived from a cross between diploid species (Vaccinium darrowium and V. Elliottii). Theoret. Appied Genet., 87: 863-868.

14:  Shah, S.R., 1939. A note of some cases of lathyrism in Punjab village. Indian Med. Gazette, 74: 385-388.

15:  Stammers, M.J., G.M. Harris, M.D. Evans and J.W. Hayward, 1995. Use of random PCR (RAPD) technology to analyse phylogenetic relationships in the Lolium/Festuca complex. Heredity, 74: 19-27.
CrossRef  |  Direct Link  |  

16:  Virk, P.S., B.V. Ford-Lloyd, M.T. Jackson and H.J. Newbury, 1995. Use of RAPD for the study of diversity within plant germplasm collections. Heredity, 74: 170-179.
CrossRef  |  PubMed  |  Direct Link  |  

17:  Vos, P., R. Hogers, M. Bleeker, M. Reijans and T. van de Lee et al., 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res., 23: 4407-4414.
CrossRef  |  PubMed  |  Direct Link  |  

18:  Wachira, F.N., R. Waugh, C.A. Hackett and W. Powell, 1995. Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome, 38: 201-210.
PubMed  |  

19:  Welsh, J., R.J. Honeycut, M. McClelland and B.W.S. Sorbral, 1991. Parentage determination in maize hybrids using the arbitrarily primed polymerase chain reaction (AP-PCR). Theoret. Applied Genet., 82: 473-476.
CrossRef  |  Direct Link  |  

20:  Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski and S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535.
CrossRef  |  PubMed  |  Direct Link  |  

21:  Yang, X. and C. Quiros, 1993. Identification and classification of celery cultivars with RAPD markers. Theoret. Applied Genet., 86: 205-212.

22:  Zhu, J., M.D. Gale, S. Quarrie, M.T. Jackson and G.J. Bryan, 1998. AFLP marker for the study of rice biodiversity. Theoret. Applied Genet., 96: 602-611.

©  2021 Science Alert. All Rights Reserved