|
|
|
|
Research Article
|
|
Grasscutter: The Haematology and Major Parasites |
|
M.N. Opara
|
|
|
ABSTRACT
|
Grasscutter contributes to both the local and export earnings of most countries in Sub-Saharan Africa. At the local market level, for example, approximately 73 tons of grasscutter meat representing more than 15, 000 animals can be sold in a year. According to recent survey, the grasscutter continues to dominate the bush meat trade. However, international trade as well as regional and continental interests in the grasscutter meat provides economic bases for the development of the grasscutter industry. The industry will be greatly enhanced through the establishment of breeding centres to provide stocks for farmers and other growers who will multiply its production and also provide additional source of income, desperately required in the quest to help the rural poor to meet their basic necessities and sustain their food security. Detailed information on the health and diseases of these rodents are reported here. Some of the disease agents include species of gastrointestinal helminthes (nematodes, trematodes, cestodes and acanthocephala) and haemoparasites (Trypanosoma, Babesia and Plasmodium species).
|
|
|
|
|
Received: March 19, 2010;
Accepted: May 07, 2010;
Published: August 07, 2010
|
|
INTRODUCTION
The need for adequate cheap sources of animal protein has brought attention
to the rearing of wild animals. One of the successfully reared wild animals
today is the grasscutter (Akinloye, 2005).
Proper grasscutter feeding has been the major factor that determines the health
of the animal apart from the environmental component in which the animal exists
(Asibey, 1974).
The grasscutter meat is a favourite one and it accounts for the greater proportion
of bush meat sold in most of the continent of Africa, particularly West Africa
(NRC, 1991).
Studies in Ghana carried out by Ewer (1969) demonstrated
that the animals could be kept in captivity (Baptist and
Mensah, 1986; Ntiamo-Baidu, 1998). Their study confirmed
the feasibility of rearing the grasscutter in captivity and demonstrated increased
litter size as a function of good feeding.
There are several justifications for rearing the wild grasscutter when taken into captivity. Such justifications include; the grasscutter does not require an extensive area to function; it can be easily fed any other agricultural by products available in Nigeria; there is no religious taboo on the consumption of the meat; it does not require imported raw material inputs to succeed; it has a high litter size of eight per twelve months and low mortality rate of about 10% among offspring and its excretory wastes do not have offensive odour.
The domestication of grasscutter has not yet been perfectly established (Addo,
1997). Captive reared grasscutters are fed with forages and concentrates
depending on the availability of the feed source, but the concentrates must
be in low quantity to avoid a negative influence on the animal (Akinloye,
2005; Opara and Fagbemi, 2009).
Low production of animals is brought about by many factors in the tropics one
of which is disease (Van Veen et al., 1974; Ikeme,
1977; Opara and Fagbemi, 2010a).
According to studies by Opara et al. (2006),
it was reported that there was no significant difference between the haematological
indices of these captive-reared grasscutters and those of the wild ones.
A previous report has also shown that the wild grasscutters harbour Trypanosoma
sp., Babesia sp. and Plasmodium sp., in their blood without
obvious clinical symptoms (Opara and Fagbemi, 2010b, c).
The severity of these diseases depends on the nutritional state of the animals,
especially during the dry season when feed is inadequate in quality and quantity
(Opara and Fagbemi, 2009).
ORIGIN OF THE GRASSCUTTER
Grasscutter is a wild herbivorous rodent found in the sub-Saharan region of
Africa. It is the biggest after porcupine in the rodent class. It is referred
to as Cane rat or cutting grass by many. Scientifically, it is referred to as
Thryonomys swinderianus. Its sub-order is that of Hystricomorpha (porcupine
relatives) and the super family is Petromuroidea (Rock rat- like), with genus
Thryonomys (Wood, 1974).
Kingdom |
: |
Animalia |
Phylum |
: |
Chordata |
Sub-phylum |
: |
Vertebrata |
Class |
: |
Mammalia |
Order |
: |
Rodentia |
Sub-order |
: |
Hystricomorpha |
Family |
: |
Thryonomyidae |
Genus |
: |
Thryonomys |
Species |
: |
Thryonomys swinderianus |
The Species Are of Two Types
Thryonomys swinderianus Temminck which is the giant breed and Thryonomys
gregorianus (Rosevear, 1969; Simpson,
1974).
PHYSICAL DESCRIPTION
The body length of Thryonomys swinderianus varies from 25-70 cm, with
an average of 48 cm and their tail reaches 0.65-26 cm in length (Fitzinger,
1995). The total body weight of adult ranges between 4-12 kg. The heaviest
bodies have an average weight in males of 4.5 and 3.5 kg in females (Merwe,
2000), which looks like a giant guinea pig with a short tail. The body is
heavily built, small round with bristle fur and coat and a circular ear (Akinloye,
2005). The fur reflects the general colour of the animal, with brownish
colour from the base to the middle of the fur, while the upper fur appears light
yellow to reddish. The combination of these colours gives the animal brownish
yellow/red colour. Besides these, common colours that range from grayish black
to brown exist.
| Fig. 1: |
The Grasscutter (Thryonomys swinderianus), matured
adult measures 40-60 cm long; weighs 2-6 kg; mixture of reddish brown and
grey fur; monogastric herbivore; quick runner; skilled swimmer; poor vision;
good sense of smell; lives up to 4 years in captivity; Induced ovulator;
Gestation period 150-156 days; litter size up to 6. (Opara
et al., 2006) |
Genetic improvement on breeding has produced other colours such as black, yellow
red and white coloured animals. But the skin is always white after processing.
They have rounded nose, short ears and incisors that grow continuously (Mills,
1997). The pelage is coarse, with flattened bristle- like hairs that grow
in groups of five or six. The fore feet are smaller than the hind feet and have
three well developed middle digits with the first and fifth digits greatly reduced.
The hind feet have no first digit and all digits have heavy claws (Fitzinger,
1995). The dental formula for Thryonomys swinderianus is 1/1, 0/0.
1/1, 3/3 (Merwe, 2000). They are endothermic and bilaterally
symmetrical. The arrangement of the grasscutters digits and pads on the fore
feet allows a stem to be gripped in one paw only, while being fed into the mouth
unlike other rodents that use both paws to hold a single stem (Fitzinger,
1995).
Despite their size and short limbs, grasscutter runs quickly when disturbed
and they are reputed to be good swimmers. Their nipples are arranged in lateral
position and this makes the young ones to suckle their mother from the side
(Asibey, 1974). The head is broad with short flattened
muzzle and with small eyes and ears. Its tail is covered with small hairs. The
mammary formula is 3+3 = 6 (Asibey, 1974). The grasscutter
is shown in Fig. 1.
SOCIAL BEHAVIOR
Thryonomys swinderianus is a semi nocturnal animal and they live in
colonies comprising of one male and several females in each colony and the young
ones from more than one generation. Even though it possesses digits equipped
with power and sharp claws, it does not crawl on vertically erect wall or object
unlike African giant rat. It burrows into the ground, but can temporarily shelter
in hollow made by other animals. It is sensitive to noise and almost very frightened
when it senses danger (Fitzinger, 1995).
The animal always shelters itself with dry grass to provide warmth since the
animals is allergic to cold weather (Abioye et al.,
2008). Grasscutter cannot jump any obstacle above 3 ft. Many of the animals
weaknesses make it prone to easy capture when spotted by hunters, capture team
or predators. Nevertheless, grasscutter has the ability of freezing up while
hiding under grasses without being detected when it is being hunted (Ntiamoa-Baidu,
1998). That is why hunters usually adopt the heavy use of fiend dogs to
flush it out during hunting. The animal tends to always protect its home range
(feeding, nesting and mating territory) against another animal of their kind.
That is why grasscutters house and enclosure are divided into many partitions
suitable for easy grouping of the animals to avoid cannibalism and fighting
among animals, more especially during mating. They are also caecophagic (Asibey,
1974; Fitzinger, 1995; Abioye
et al., 2008).
BIOLOGY OF GRASSCUTTER
Thryonomys swinderianus live in groups of males and females during the
breeding season. During the dry season, the males separate from the groups and
live by themselves. The females live together afterwards (Fitzinger,
1995; Jori et al., 2001). The wet season
of the year is usually the breeding season (Oduor-Okelo
and Gombe, 1982). The females are spontaneous ovulators (Addo
et al., 2001) and usually two litters are possible in a year, but
the females must be flushed before refertilization for high prolificacy. Sexual
maturity is attained at 6 months for males and 5 months for females. There may
be slight variation due to feeding. The gestation period is 5 months (152+2
or -2 days). The average litter size is 4 in the wild but up to twelve litters
size has been recorded in captivity (Addo, 2002; Abioye
et al., 2008). Growth continues at old age but very slowly. The estrus
cycle lasts for a period of 6.62 days and the offspring weighing about 1.29
g and relatively well developed. The offsprings are precocious, fully furred
and capable of running and have their eyes open at birth. Sexual determination
in the grasscutter is done at birth on the basis of the pro-genital distance,
which is larger in males than in females as well as a dark brownish stain around
the genital part of the mature buck (Addo et al.,
2001). Flushing of doe is necessary also to allow for proper breast feeding
of the kids and this can last for about three to six weeks. The doe possesses
three pairs of mammary glands by the side of the belly. Apart from the anogenital
colour and distance, the animal size can be a criterion for sex differentiation,
where the males are larger in size than the females. Shape of the animals
nose is also a criterion. The male has blunt and muscular nose shape, while
the female has a pointed nose shape. However, the shape of the animals
nose becomes more conspicuous when the animal is in motion or while the animal
adopts a standing position. Another criterion is the peculiar sound produced
by the males and females, especially during courtship (Asibey,
1974).
LIFE SPAN/LONGEVITY The average lifespan of a captive-reared grasscutter ranges from 7-9 years. They can live up to 12 years depending on health care given to the animals during their service lives. The total life span is measured from the period of parturition to death while the service life is the period when the animal reaches maturity to the time when it can no longer reproduce. That is the period of efficient reproductive performance of the animals. HAEMATOLOGICAL AND BIOCHEMICAL VALUES IN THE GRASSCUTTERS
Studies have shown that certain factors influence haematological and biochemical
parameters (Weldy et al., 1964). Haematological
and biochemical analyses of an animals blood represent a good diagnostic
aid for the assessment of physiological, nutritional and pathological conditions
of animals (Jain, 1986; Bush, 1991;Awah-Ndukum
et al., 2001). Nutrition age, sex, genetics (breed and crossbreeding),
reproduction, housing, starvation, environment factors, stress, transportation
and diseases are known to affect haematological and biochemical values (Coles,
1986) and thought to play major roles in the differences in haematological
and biochemical parameters observed between tropical and temperate animals (Ogunriade
et al., 1981; Bush, 1991; Ogunsanmi
et al., 1994; Opara and Fagbemi, 2009). Ogunsanmi
et al. (2002), determined the haematological, plasma biochemical
and whole blood electrolytes profile in the normal live-captive and rehabilitated
adult African grasscutters. They reported no statistical evidence of sexual
dimorphism in the values of these parameters of the cane rats, except plasma
alanine transaminase (ALT), which was significantly higher (p<0.001) in the
males than in the females. In their studies, Owolabi (2002)
and Opara et al. (2006), reported a significantly
(p<0.05) higher lymphocyte, eosinophil and basophil values for both the female
and male wild grasscutters, compared with those of captive- reared. They equally
reported a significantly higher white blood cell counts in female than male
wilds grasscutters and attributed these differences to the free nature of the
wild rodents which are more prone to all kinds of infections (Gotoh
et al., 2001; Dinh, 2002). The significantly
high levels of basophils and eosinophils among the wild grasscutters (Opara
et al., 2006) were due to the presence of inhabiting parasites in
the animals.
PARASITIC DISEASES OF THE GRASSCUTTER
The grasscutter unlike many other livestock species such as rabbits, sheep
and goats requiring an appreciable drug input, is very hardy and requires little
or no drug input (Adu, 2002; Opara
and Fagbemi, 2008a).
Incidence, severity and disease prevalence have been shown to vary with the
management systems (Smith and van Hautert, 1984; Adu,
2002). Again, Adu (2002) reported that the major
disease conditions include pulmonary congestion, septic wounds, ruptured uterus,
orchitis with septicaemia, gastro-intestinal obstruction, gastroenteritis and
pneumonia. The gastrointestinal obstruction and gastro enteritis may be caused
by helminthes parasites (Jori et al., 2001; Awah-Ndukum
et al., 2001).
GASTROINTESTINAL HELMINTHES
The study of helminth parasites of domestic animals began as early as 1884
in America where on Act was enacted to prevent the exportation of diseased cattle
and to provide means for the suppression and extirpation of diseases among domestic
animals (Blood and Radostits, 1994). The idea came up
as a result of hardship and large economic losses brought about by these parasitic
helminthes, hence the need for control and eradication of these parasites. As
a result of this, many researches on gastrointestinal helminthes parasites have
been reported.
Blood and Radostits (1994), observed that the incidence
of helminthes diseases varies between areas depending on the climate, nutritional
status of the animal, pasture management a s well as the animals immunity
to worm infestation. As a result, Van Veen et al.
(1974) reported that environmental factors such as topography, climate and
husbandry practice have led to a situation where a number of helminthes parasites
common to many parts of the world are rare or do not occur at all in Nigeria
and that some helminth parasites common in Nigeria have not been reported elsewhere.
The incidence, severity and disease prevalence have been shown to vary with
management systems. Smith and van Hautert (1984) reported
that, while infections accounted for over half of the disease conditions observed
in a group of intensively managed ruminants, they were of negligible prevalence
in a controlled group raised semi-intensively. In the later group, parasitic
gastroenteritis was the most prevalent disease condition.
A study conducted by Adu et al. (1999) in Ghana
reported the infestation of grasscutters by Ascaris sp., Schistosoma
haematobium and Trichuris sp., including ticks of Dermacentor
sp. and Rhipicephalus sp. But the Ascaris sp., encountered
in the grasscutter is non-pathogenic to the domestic stock until proved otherwise
since each animal species has its specific ascarid (Blood
and Radostits, 1994). The observation of Schistosoma haematobium
eggs in the grasscutter is very important in the spread of infection to both
livestock and man and the infection can only occur when part of its life cycle
passes through an intermediate fresh water mollusc host. The identification
of the eggs of Trichuris trichuria is important, in that various species
attack various domestic stock and possibility of infection of domestic stock
would be by sharing the same pasture and by domestic stock hanging around where
the wild-stock are slaughtered and faeces disposed of in the nearby bushes.
Jori et al. (2001) revealed the presence of
Paralibyostrongylus hebreniticus, Trichuris sp. and Taenia
sp., in the gastrointestinal tracts of the grasscutters. Matamorous
et al. (1991) in Costa Rica also reported the incidence of Trichuris
sp., Taenia sp., Strongyloides sp. and Ascaridia sp.,
as the helminthes parasites of the grasscutters.
A preliminary study conducted by Yeboah and Simpson (2004)
in Ghana, reported some ecto and end-parasites of the grasscutters Four species
of ticks found included Rhipicephalus simpsoni, Ixodes aulacodi Ixodes
sp. and Haemaphysalis parmata. The six helminthes parasites they
reported comprised of two genera of cestode and four of nematodes. The cestodes
were Furhmanella transvaalensis, Railletina mahonae; while the
nematodes were Longistriata spira Trachypharynx natalensis, Paralibyostrongylus
vondewei and Trichuris paravispicularis.
A study carried out in Cameroon by Mpoame (1994) and
Awah-Ndukum et al. (2001) had also reported the
presence of a flea (Xenopsylla sp.) cestode (Hymenolopsis sp.)
and Nematode (Heterakis sp.) from a dead grasscutter in captivity. Opara
and Fagbemi (2008a, b) in Nigeria reported a wider
array of helminthes in the wild grasscutters, which comprised of 14 nematode
species (Ascaris, Bunostomum, Cooperia, Gaigaria,
Gongylonema, Haemonchus, Heterakis, Mammomonogamus,
Metastrongylus, Oesophagostomum, Strongyloides, Toxocara,
Trichstrongylus and Trichuris sp.), 5 trematodes, (Cotylophoron,
Dicrocoelium, Gastrodiscus, Paramphistomum and Schistosoma
sp.), 4 cestodes (Avitellina, Moniezia, Taenia and
Thysaniezia sp.) and 1 acanthocephala (Moniliformis sp.). Another
study by these same authors (Opara and Fagbemi, 2010a)
showed that grasscutters harbor helminth parasites while in captivity. The helminthes
of interest observed in the captive-reared grasscutters included 7 nematodes
(Ascaridia, Haemonchus, Mammomonogamus, Oesophagostomum,
Strongyloides, Trichostrongylus and Trichuris sp.), two trematodes
(Fasciola and Schistosoma sp.) and two cestodes (Taenia
and Thysaniezia sp.).
BLOOD PROTOZOAN PARASITES
There have been reports of few cases of naturally occurring blood parasites
of the cane rats (Namso and Okaka, 1998), since they
co-habit with other animal species. For example Ntekim and
Braide (1981) reported the occurrence of Trypanosoma lewisi in the
blood of wild rats, while Opara and Fagbemi (2008b)
reported the natural occurrence of Trypanosoma congolense, T. vivax,
T. simiae, Plasmodium and Babesia sp., among wild grasscutters
and Trypanosoma congolense, T. vivax, Plasmodium and
Babesia sp., in the captive-reared grasscutters.
HAEMATOLOGICAL EFFECTS OF BLOOD PROTOZOA IN GRASSCUTTERS
Opara and Fagbemi (2010a) reported that the Mean Corpuscular
Volume (MCV) of trypanosome infected grasscutters does not change more than
for uninfected ones, while the Mean Corpuscular Haemoglobin Concentration (MCHC)
significantly decreases (p>0.05) suggesting a macrocytic hypochromic anaemia).
They also observed that grasscutters experimentally infected with Trypanosoma
congolense and T. vivax suffered leucopenia at 7 dpi, while the uninfected
ones did not. Thus, indicating that trypanosomiasis in grasscutters also leads
to leucopenia (Seifert, 1996), which further reduces the
animals immunity and thereby exposing them to other infections.
Trypanosome infected grasscutters equally experience a significant decrease
in plasma glucose, which also agrees with Soulsby (1982),
who reported that blood form of trypanosomes absorb nutrients such as glucose
by mediated mechanism of membrane transport.
He also reported that blood protozoa increase the long chain fatty acids of
plasma membrane of red blood cells, but this is not the case in the grasscutters,
as this could probably be because the grasscutter has very low body fat content
(Adu et al., 1999). In their work, Opara
and Fagbemi (2010a) reported that grasscutters experimentally infected with
T. vivax had significantly (p< 0.05) higher plasma Aspartate Amino
Transferase (AST). Serum AST is however not a specific enzyme for the liver,
as high levels can also be found in skeletal and cardiac muscles as well as
red blood cells (Bush, 1991). Thus, increase in AST may
indicate an on-going liver disease (Duncan et al., 1994)
as observed at histopathology.
Temperature of grasscutters infected with T. vivax and T. congolense,
showed dramatic fluctuation. Soulsby (1982) had reported
that undulating temperature is a clinical feature in animals infected with trypanosomes.
Pathological lesions observed in some of the tissues of trypanosome infected
grasscutters include liver and kidney vacuolar and tubular epithelial degeneration,
respectively, with thrombosis in alveolar blood vessels. These are in agreement
with Soulsby (1982) and Shah-Fischer
and Say (1989), who also reported organ degenerative changes in animal trypanosomiasis.
CONCLUSION The distribution of grasscutters in Africa, south of Sahara, the management system required, nutrition and reproductive performance have all been well studied. Also detailed information on health and diseases of these rodents are reported here. Furthermore, the grasscutter is known to be economically important as an agricultural pest and its meat is widely accepted by all classes of people. It is also a good laboratory animal for research studies.
|
REFERENCES |
1: Abioye, F.O., A.C. Uda, M.N. Opara, P.C. Aju and M.C. Onyema, 2008. Adaptability of grasscutter (Thryonomys swinderianus) in natural and domestic environments. Proceedings of the Conference of Forestry Association of Nigeria, Aug. 15-20, Uyo, Akwa Ibom State, pp: 537-550
2: Addo, P.G., 1997. Domesticating the wild grasscutter (Thryonomys swinderianus Temminck, 1827) under laboratory conditions. Ph.D. Thesis, University of Ghana, Legon, Ghana.
3: Addo, P.A., S. Adjei, B. Awumbila and E. Awotwi, 2001. Determination of the ovulation mechanism of he grasscutter (Thryonomys swinderianus). J. Anim. Reprod. Sci., 22: 11-13. PubMed |
4: Addo, P., 2002. Detection of mating, pregnancy and imminent Parturition in the grasscutter (Thryonomys swinderianus) Livest. Res. Rural Dev., 14: 8-13. Direct Link |
5: Adu, E.K., 2002. Dexieme conference on promoting the dissemination of the breeding of the cane rats in Africa, Su Du Sahara. Experiences of a Research Institute on Grasscutter Farming in Ghana. http://www.aulacode.africa-web.org/conf2002/pdf/t224.pdf.
6: Adu, E.K, W.S. Alhassan and F.S. Nelson, 1999. Smallholder farming of the greater cane rat Thryonomys swinderianus Temminck, in Southern Ghana: A baseline survey of Management practices. Trop. Anim. Health Prod., 31: 223-232. CrossRef |
7: Akinloye, A.P., 2005. Update on Grasscutter Rearing-Thryonomys Swinderianus (Temminck). Height Mark Printers, Ibadan, Nigeria, pp: 21-23
8: Asibey, E.O.A., 1974. Wildlife as a source of protein in Africa South of the Sahara. Biol. Conservation, 6: 32-39. CrossRef |
9: Mills, G.L.H., 1997. The Complete Book of South African Mammals. Struik Publishers, Cape Town, Winchester, ISBN-13: 9780947430559, pp: 6-18
10: Awah-Ndukum, J., J. Tchoumboue and J.C. Tong, 2001. Stomach impaction in grasscutter (Thryonomys swinderianus) in captivity: Case report. Trop. Vet., 19: 60-62.
11: Baptist, R. and G.A. Mensah, 1986. Benin and West Africa: The cane rat farm animal of the future. World Anim. Rev., 60: 2-6.
12: Blood, D.C. and O.M. Radostits, 1994. Veterinary Medicine. 8th Edn., Bailliare Tindall Ltd., London
13: Bush, B.M., 1991. Interpretation of Laboratory Results for Small Animal Clinicians. Backwell Scientific Publications, London, ISBN: 9780408108492, Pages: 515
14: Coles, E.H., 1986. Veterinary Clinical Pathology. 4th Edn., W.B. Saunders Co., Philadelphia, London, ISBN: 978-0721618289, Pages: 486
15: Dinh, V.O., 2002. Hematological values of macques (Macaca fascicualaris) in a mangrove forest, Vietnam. J. Zool., 10: 15-15.
16: Duncan, J.R., K.W. Prasse and E.A. Mahaffey, 1994. Veterinary Laboratory Medicine: Clinical Pathology. 3rd Edn., Iowa State University Press, Ames, Iowa, USA.
17: Ewer, R.F., 1969. Form and function in the grasscutter Thryonomys swinderianus Temminck (Rodentia, Thryonomyidae). Ghana J. Sci., 9: 131-149.
18: Fitzinger, F., 1995. Cane Rats. In: Walker's Mammals of the World, Nowak, R. (Ed.). The John Hopkins University Press, Maryland, pp: 1650-1651
19: Gotoh, S., O. Takennako, K. Watanabe, Y. Hamada and R. Kawamoto et al., 2001. Hematological values and Parasitic fauna in free ranging Macaca hecki and the Macaca tonkeana/Macaca hecki hybrid group of Salawesi Island. Indonesia Primates, 42: 27-34. CrossRef |
20: Ikeme, M.M., 1977. Helminthes of livestock and poultry: An overview. Trop. Vet., 15: 97-102.
21: Jain, N.C., 1986. Schalm Veterinary Haematology. 4th Edn., Lea and Febiger, Philadelphia, USA
22: Jori, F., J.E. Cooper and J. Casal, 2001. On post mortem findings in captive cane rats (Thryonomys swinderianus) in Gabon. Vet. Record, 148: 624-628. PubMed |
23: Merwe, M., 2000. Tooth successions in the greater cane rat (Thryonomys swinderianus) (Temminck, 1827). J. Zool., 251: 535-547. Direct Link |
24: Matamorous, Y., J. Velazquez and B. Pashov, 1991. Intestinal parasites of Agouti paca (Rodentia, Dasyproctidae) in costa-rica. Revista de Biologia Tropical, 39: 173-176.
25: Mpoame, M., 1994. Gastro intestinal helminthes of the cane rat Thryonomys swinderianus, in Cameroon. Trop. Anim. Health Prod., 26: 239-240.
26: NRC., 1991. Quail: Micolivestock-Little Known Small Animals with a Promising Economic Future. National Academy Press, Washington, DC., pp: 147-155
27: Ntiamo-Baidu, Y., 1998. Sustainable use of bush meat. Wildlife Development Plan (1998-2003) Wildlife Department Accra, 6: 78-78.
28: Ntekim, A. and E.I. Braide, 1981. A study of the parasites of wild Rats from the University of Calabar Poultry. Niger. J. Parasitol., 4: 20-21.
29: Ogunriade, A., J. Fajimi and A. Adenike, 1981. Biochemical Indices in the White Fulani (Zebu) Cattle in Nigeria. Rev. Elev. Med. Pays. Trop., 34: 413-415. PubMed |
30: Ogunsanmi, A.O., S.O. Akpavie and V.O. Anosa, 1994. Serum biochemical changes in West African Dwarf sheep experimentally infected with Trypanosoma brucei. Rev. Elev. Med. Vet. Pays. Trop., 47: 195-200. PubMed |
31: Ogunsanmi, A.O., P.C. Ozegbe, D. Ogunjobi, V.O. Taiwo and J.O. Adu, 2002. Haematology, plasma biochemistry and whole blood minerals of the captive adult African grasscutter (Thryonomys Swinderianus, Temminck). Trop. Vet., 20: 27-35.
32: Opara, M.N., K.A. Ike and I.C. Okoli, 2006. Haematology and plasma biochemistry of wild adult African crasscutter (Thryonomis swinderianus, Temminck). J. Am. Sci., 2: 17-22. Direct Link |
33: Opara, M.N. and B.O. Fagbemi, 2008. Observations on the Gastrointestinal Helminth parasites of the wild Grasscutter (Thryonomys swinderianus, Temminck) in Imo State, Nigeria. Int. J. Trop. Agric. Food Syst., 2: 105-110.
34: Opara, M.N. and B.O. Fagbemi, 2008. Occurrence and prevalence of gastrointestinal helminthes in the captive-reared grasscutter (Thryonomys swinderianus, Temminck), from Southeast Nigeria. Life Sci. J., 5: 50-56.
35: Opara, M.N. and B.O. Fagbemi, 2008. Haematological and plasma biochemistry of the adult wild african grasscutter (Thryonomys swinderianus): A zoonosis factor in the tropical humid rain Forest of Southeast Nigeria. Ann. N. Y. Acad. Sci., 1149: 394-397. CrossRef |
36: Opara, M.N. and B.O. Fagbemi, 2009. Dietary influences of feed types on the haematological indices of captive-reared grasscutters experimentally infected with Trypanosoma congolense. Proceeding of the 10th Biennial Conference of the Society for Tropical Veterinary Medicine, June 28-July 3, Lubeck, Germany, pp: 63-67
37: Opara, M.N. and B.O. Fagbemi, 2010. Therapeutic effect of Berenil R in experimental murine trypanosomiasis using stocks isolated from apparently healthy captive - reared grasscutters (Thryonomys swinderianus). Nature Sci., 8: 106-110.
38: Opara, M.N. and B.O. Fagbemi, 2010. Prevalence of gastrointestinal helminthes of grasscutters intensively reared in Imo State, Nigeria. Anim. Prod. Res. Adv.,
39: Opara, M.N. and B.O. Fagbemi, 2010. Patho-physiological effects of experimental Trypanosoma congolense and Trypanosoma vivax infections in the grasscutter (Thryonomys swinderianus, Temminck). Nature Sci., 8: 88-101.
40: Owolabi, O.O., 2002. Wildlife contributions to meat protein consumption of the rural communities in South Western Nigeria. Proceeding of the 27th Annual Conference of Nigeria, March, 17-21, Society Animal Production, Federal University of Technology Akure, pp: 406-409
41: Rosevear, D.R., 1969. The Rodents of West Africa. British Museum Publications., London
42: Van Veen, T.W.S., R.A.O. Shonekan and J.P. Fabiyi, 1974. A host-parasite checklist of helminth parasites of domestic animals in Northern Nigeria. Bull. Anim. Health Prod. Afr., 23: 269-288.
43: Seifert, H.S.H., 1996. Tropical Animal Health. Kluwer Academic Publishers, Boston, London, UK., pp: 44
44: Shah-Fischer, M. and R.R. Say, 1989. Manual of Tropical Veterinary Parasitology. CAB, Wallingford
45: Simpson, G.G., 1974. Chairman's Introduction: Taxonomy Symposium. Academic Press, London
46: Smith, D.B. and M.J.F. van Hautert, 1984. Health aspects of intensive management of West African dwarf goats in the humid forest zone. Proceeding of the National Conference on Diseases of Ruminants, Oct. 3-6, Nigeria, pp: 8-13
47: Soulsby, E.J.L., 1982. Helminths, Arthropods and Protozoa of Domesticated Animals. 7th Edn., Bailliere Tindall, London, UK., ISBN-13: 9780702008207, Pages: 809
48: Wood, A.E., 1974. The Evolution of the Old World and New World Hystricomorphs. Plenum Press, New York, pp: 21-60
49: Oduor-Okelo, D. and S. Gombe, 1982. Placentation in the canerat, (Thryonomys swinderianus). Afr. J. Ecol., 20: 49-66. CrossRef |
50: Weldy, J.R., R.E. Medowell, P.J. Vansoest and J. Bond, 1964. Influence of Heat stress on Nimen Acid Levels and some Blood constituents in cattle. J. Anim. Sci., 23: 147-153.
51: Yeboah, S. and P.K. Simpson, 2004. A preliminary survey of ecto and endoparasites of the grasscutter (Thryonomys swinderianus Temminck); case study in Ekumfi central region of Ghana. J. Ghana Sci. Assoc., 3: 2-5.
52: Namso, M.E. and C.E. Okaka, 1998. A survey of naturally occurring parasites of cane rats. Niger. J. Parasitol., 28: 28-29.
|
|
|
 |