
Research Article


Eccentricity Effect on Bamboo’s
Flexural Properties


Effendi Tri Bahtiar,
Naresworo Nugroho,
Surjono Surjokusumo
and
Lina Karlinasari


ABSTRACT

Bamboo stem’s
cross sectional area is never a perfect circle, but almost ellipse. Each ellipse
shape has a unique value of eccentricity (e) as parameter to denote its circularity.
A perfect circle has a zero value of eccentricity. Conventional calculation
for bamboo flexural properties as designated by ISO 221571:2004 resulted an
overestimated or underestimated value compared to the actual value because of
the perfect circle cross sectional assumption. Inappropriate geometrical assumption
of cross sectional area derived inaccurate value of moment of inertia hereafter
affected to the measured flexural properties. Thirty six bamboo stems from 4
species namely Ampel (Bambusa vulgaris Schrad.), Tali (Gigantochloa
apus (Bl.Ex Schult.f) Kurz), Gombong (Gigantochloa verticillata (Willd.)
Munro) and Mayan (Gigantochloa robusta Kurz.) were harvested and it was
found that the eccentricity (e) value of bamboo stem could vary from 0.000 to
0.508. This paper studied the effect of eccentricity to the flexural properties
of bamboo and aimed to create the strength ratio (C_{e}) between actual
elliptical shape and assumed perfect circle shape. It was reported that the
conventional calculation arise an under estimate result if the major axis arranged
horizontally, while overestimate result will be get if the major axis arranged
vertically. So the modulus of rupture (S_{R}) which is calculated by
conventional calculation should be adjusted by the strength ratio of eccentricity
(C_{e}) in order to define more precise value. This study result the
exact relationship between C_{e }value and eccentricity for both conditions.
For simplicity, the graphical sketches were made too.





Received:
October 25, 2012; Accepted: January 22, 2013;
Published: April 11, 2013 

INTRODUCTION
Bamboo is natural product which traditionally has become the rural community’s
main choice for many purposes in South East Asia villages because it is cheap
and easy to find in their neighborhood; some bamboo species are used for building
material (pillars, walls, roof and floor), e.g., Bambusa bambos (L.)
Voss, B. blumeana (J.A. and J.H. Schulthes), B. tulda Roxb, B.
vulgaris, Dendrocalamus asper, Gigantochloa apus (J.A. and
J.H. Schultes) Kurz, G. atter (Hassk.) Kurz, G. levis (Blanco)
Merrill, G. pseudoarundinaa (Steudel) Widjaja, G. robusta Kurz
and G. scortechinii Gamble (Dransfield and Widjaja,
1995). People commonly build their bamboo houses based on the traditional
experiences without any engineering calculations. Since the demand for green
and sustainable construction arises and spreads globally (Tam
et al., 2004; Lam et al., 2011; Kamar
et al., 2010), recently bamboo construction attracts the engineer’s
attention because of its artistic, high performance, natural resources sustainability
and environmentally friendly (Chele et al., 2012;
Yu et al., 2003; Chung
and Yu, 2002; De Flander and Rovers, 2009). Many
researcher reported the advantages of bamboo for environment (Bahtiar
et al., 2012; Van der Lugt et al., 2006,
2012), its properties compared to another materials
(Hamid et al., 2012; Verma
et al., 2012; Sakaray et al., 2012;
Jiang et al., 2012; Yu
et al., 2008; Huang et al., 2012;
Li and Shen, 2011) and its sustainability (Vogtlander
et al., 2010; Nath et al., 2012).
As natural product, bamboo stem properties are influenced by many factors during
its growth period, e.g., genetic and habitat condition (Kleinhenz
and Midmore, 2001). These factors create the variability in size and physical
shape, so every stem could have varied diameter size, taper and eccentricity
(Nugroho and Bahtiar, 2012). Nugroho
and Bahtiar (2012) conducted some researches of bamboo taper effect on its
flexural properties. It was reported that the taper value didn’t affect
to flexural properties on center point bending test, but the previous study
on third point loading bending test showed that taper played significantly to
its flexural properties. So the bamboo modulus of rupture (S_{R}) should
be adjusted by its taper strength ratio (C_{t}) when it was defined
by third point loading bending test. Conventional method to measure the S_{R}
of bamboo stem as designated in ISO 221571:2004 based on third point loading
bending test resulted under estimate values than the actual ones because of
notaper assumption. Adjusting the resulted testing value with the corresponding
strength ratio will result more precise value. Beside taper effect, the eccentricity
on bamboo stem will affected to its flexural properties which will be studied
in this paper.
Bamboo stem commonly assumed as hollow cylinder shape (Sharmaa
et al., 2013; Wegst, 2011; Inoue
et al., 2011; Schulgasser and Witztum, 1992).
In fact, a perfect circle of natural product (including bamboo stems) may never
be found. The cross sectional area of bamboo stems are naturally more similar
to ellipse than circle. There are always maximum and minimum diameters on every
pieces of cross sectional area. Some standards (e.g., ISO 221571:2004) designated
the average value of diameter as standard value to calculate the bamboo mechanical
properties. This unapropriate geometrical assumption created an over or under
estimate value compared to the actual properties because the inaccurate value
of moment of inertia of plane area. Moment of inertia is directly related to
the beam stress and strain (Nash, 1998) which is became
the basic equation to calculate the flexural properties of beam. An overestimate
mechanical properties of material could become dangerous in structural planning
because the building could collapse since the overload condition, while the
under estimate value created nonefficient building. A precise value of each
material mechanical properties play important role in building construction
planning. So it is important to study the effect of eccentricity on bamboo mechanical
properties in order to plan the bamboo construction more reliable.
Eccentricity term is commonly used in physical and planetary science (Olson
and Deguen, 2012; Correia et al., 2011).
Eccentricity is the parameter to measure the circularity of ellipse shape. The
eccentricity value for a perfect circle is 0 (zero), while the value becomes
higher for the thinner ellipse shape. This study aimed to derived the exact
mathematical relationship between eccentricity value and its effect on the bamboo
stems flexural properties which determined by its strength ratio (C_{e}).
Then this mathematical relationship was applied for eccentricity range value
which was obtained from survey and harvested bamboo stems. Finally, this study
resulted strength ratio formulae which could be applied as adjustment factor
to gain more precise value of bamboo flexural properties.
MATERIALS AND METHODS Survey on bamboo eccentricity: First, a survey was conducted on 5 bamboo shops in Bogor, West JavaIndonesia to measure the dimensional properties of available bamboos. We choose 2040 bamboo stems on every shop randomly. At the same time we harvested 36 bamboo stems from 4 species in Arboretum BambooBogor Agricultural University: 9 stems from each species, then measuring its dimensional properties. Strength ratio of eccentricity (C_{e}) derivation: Eccentricity effect on bamboo’s flexural properties defined by deriving it theoretically based on beam’s maximum stress concept. The ratio of maximum stress on ellipse (actual) and circle (assumed) cross sectional shape is denoted as strength ratio of eccentricity (C_{e}). The exact relationship between eccentricity (e) and its strength ratio (C_{e}) derived mathematically. C_{e} value range for bamboo: The C_{e} value for overal range of bamboo stems eccentricity could be justified by substituting the range of eccentricity value which resulted from survey and harvested stems into the obtained mathematical equation. RESULTS AND DISCUSSION
Survey on bamboo eccentricity: A survey was conducted in 5 bamboo shops
in Bogor. The basal and top diameters of 162 bamboo Tali (Gigantochloa apus
(Bl.Ex Schult.f) Kurz) stems which have 50110 cm length were measured. The
maximum diameter was defined as major axis and minimum diameter was the minor
axis. The result was shown in Table 1. The basal eccentricity
varied from 0.00 to 0.47 and the top varied from 0.00 to 0.51. Then 36 bamboo
stems from 4 species, namely: Ampel (Bambusa vulgaris Schrad.), Tali
(Gigantochloa apus (Bl.Ex Schult.f) Kurz), Gombong (Gigantochloa verticillata
(Willd.) Munro) and Mayan (Gigantochloa robusta Kurz.), were harvested:
9 stems from each species. The measurement found that the bamboo cross sectional
shape could vary from perfect circle into ellipse.
Table 1: 
Dimensional properties of tali stems 

d: Average diameter, a: Major axis (maximum diameter), b:
Minor axis (minimum diameter), e: Eccentricity, N = 162 
Table 2: 
Eccentricity of bamboo stems 

N = 4, a: Major axis, b: Minor axis, e: Eccentricity 
Zero eccentricity which means a perfect circle shape found in Tali and Ampel,
but it was not found in Gombong and Mayan. As seen on Table 2,
the overall eccentricity for 36 measured bamboo stems was 0.0000.508. It was
similar with the survey result on the shops. This condition proved that most
of bamboo cross sectional plane was more similar to ellipse than circle shape.
Meanwhile some researchers assumed the circle cross sectional area of bamboo
stem in order to make more simple calculation for their study (Sharmaa
et al., 2013; Wegst, 2011; Inoue
et al., 2011). In their study, the diameter was defined as average
of maximum diameter (major axis) and minimum diameter (minor axis). Since there
is exact relationship between geometrical shape and beam’s stress and strain
(Nash, 1998), bending test with perfect circle cross sectional
area assumption may result unprecise value of bamboo’s flexural properties.
In order to minimize the difference of assumed and actual value, a strength
ratio should be applied (Nugroho and Bahtiar, 2012).
Kretschmann (2010) defined: “the strength ratio
is the hypothetical ratio of the strength of a piece of lumber with visible
strengthreducing growth characteristics to its strength if those characteristics
were absent”. On this study, strength ratio was defined as the hypothetical
ratio of strength of a piece of bamboo stem with ellipse cross sectional shape
compared to its strength if ideal circle shape applied.
Strength ratio of eccentricity (C_{e}) derivation: Bamboo stem’s
cross sectional area is commonly assumed as a perfect circle, while its actual
shape is almost ellipse (Fig. 1). Ellipse shape has major
(a) and minor (b) axis which are the longest and shortest diameters, respectively
(Bressoud, 1991). In order to calculate more simply, in
some studies the circle diameter (d) which calculated as average of maximum
and minimum diameter of ellipse shape is commonly chosen as the standard value
(Sharmaa et al., 2013; Wegst,
2011; Inoue et al., 2011). So the mathematical
relationship between a, b and d usually be defined as Eq. 1:
The strength ratio of eccentricity (C_{e}) denoted as the ratio of
maximum stress in actual ellipse shape (σ_{e}) and the assumed
cylindrical shape (σ_{c}) (Eq. 2):

Fig. 1(ab): 
Sketch of assumed cylindrical shape compared to the actual
ellipse shape which the major axis coincides with (a) Absis and (b) Ordinate 
Since the bending stress is known as Eq. 3 (Nash,
1998), so the eccentricity strength ratio could be define as Equation
4 because the maximum length from centroid (c) for circle is a half diameter
(d/2) while for the ellipse is a half minor axis (b/2):
Substituting Eq. 1 into 4 it becomes:
Since the moment of inertia for circle (I_{c}) and ellipse (I_{e})
shape are denoted by Eq. 6 (Nash, 1998)
and Eq. 7 (Symonds et al., 1996),
respectively, Eq. 5 could be solved become Eq.
8:
Eccentricity is the ratio of the distance of any point on a conic section (ellipse,
parabola, hyperbola or circle) from a focus to its distance from the corresponding
direction.

Fig. 2(ab): 
Strength ratio of ellipse bamboo when major axis arranged
(a) Horizontally and (b) Vertically during bending test 
This ratio is describing the shape of a conic section and the value is constant
for any particular conic section (Jennings, 1994). By
this definition, eccentricity (e) is defined as Eq. 9, so
ratio of minor axis (b) to major axis (a) of ellipse could be defined as Eq.
10:
Substituting Eq. 10 into 8, we get the exact relationship
between eccentricity with its strength ratio as seen in Eq. 11
and the graphical sketch is shown in Fig. 2a:
As seen on Fig. 2a, strength ratio value for a perfect circle
shape is 1 (one), while for ellipse shape is always higher than 1 (one). It
is proved that the perfect circle assumption on conventional bending test resulted
an under estimate flexural properties value when the major axis (a) configured
horizontally during testing. Equation 11 and Fig.
2a are suitable for major axis (a) arranged coincided with horizontal axis
(absis) (Fig. 1a). Different result will arise when the testing
conducted with major axis (a) configured vertically as shown in Fig.
1b. If the major axis (a) arranged coincided with vertical axis (ordinate),
the C_{e} value could be derived by similar way become Eq.
12 and the graphical sketch is shown in Fig. 2b:
Figure 2b showed that the strength ratio commonly lower than 1 (one). This condition proved that the conventional flexural properties are over estimate compared to the actual value if the major axis (a) configured horizontally during the bending test.
Strength ratio of eccentricity (C_{e}) value range for bamboo:
As mentioned before, during the survey it was found that most of bamboo stems
cross sectional plane varied from perfect circle into ellipse. Most of them
were ellipse. Applying Eq. 11 for bamboo in bending test
which its major axis arranged horizontally, the strength ratio value was 1.0001.087.
The detail strength ratio for all 4 species was shown in Table
3. So the conventional bamboo’s flexural properties value which calculated
within circle shape of bamboo stem assumption could make 08.7% under estimate
value. The under estimate flexural properties value will made the oversize structural
component. The building will be stronger but more expensive. Meanwhile, Table
3 also showed the strength ratio for bamboo in bending test when its major
axis arranged vertically. The values were gained by applying Eq.
12. For overall eccentricity range the strength ratio value was 1.0000.935.
It means perfect circle shape assumption on bamboo bending test caused 06.5%
over estimated value compared to the actual modulus of rupture (S_{R})
which tested by vertically arranged major axis ellipse shape configuration.
This condition could be dangerous because it leads the engineer to design smaller
size structural component than the demand. In extreme condition, the building
could be collapse before estimated maximum load applied.
Table 3: 
Strength ratio of eccentricity for bamboo species 

N = 4 
CONCLUSION Cross sectional shape of bamboo stems could vary from perfect circle into ellipse. The eccentricity which denoted the circularity of the shape affected to the measurement of bamboo stem’s flexural properties. The relationship between eccentricity and its strength ratio was determined by mathematical equation and it was proved that circle assumption on bending test lead under estimate value if the major axis arranged horizontally on test configuration and lead over estimate value if the major axis arranged vertically. The measured modulus of rupture (S_{R}) could be 08.7% lower or 06.5% higher than the actual value. ACKNOWLEDGMENT The authors thank “Direktorat Jendral Pendidikan Tinggi (DIKTI)”Indonesian Ministry of Education for the support and research funding.

REFERENCES 
Bahtiar, E.T., N. Nugroho, A. Carolina and A.C. Maulana, 2012. Measuring carbondioxide sink of betung bamboo (Dendrocalamus asper (Schult f.) backer ex heyne) by sinusoidal curve fitting on its daily photosynthesis light response. J. Agric. Sci. Technol. B, 2: 780788. Direct Link 
Bressoud, D.M., 1991. Second Year Calculus: From Celestial Mechanics to Special Relativity. Springer, Germany.
Chele, E.S., M.C. Ricardo, P.M. Anac and M.R. Teresad, 2012. Bamboo, from traditional crafts to contemporary design and architecture. Proc. Soc. Behav. Sci., 51: 777781. CrossRef 
Chung, K.F. and W.K. Yu, 2002. Mechanical properties of structural bamboo for bamboo scaffoldings. Eng. Struct., 24: 429442. CrossRef  Direct Link 
Correia, A.C.M., G. Boue and J. Laskar, 2011. Pumping the eccentricity of exoplanet by tidal effect. Astrophys. J. Lett., 744: 15. CrossRef 
De Flander, K. and R. Rovers, 2009. One laminated bambooframe house per hectare per year. Constr. Build. Mater., 23: 210218. CrossRef 
Dransfield, S. and E.A. Widjaja, 1995. Plant Resources of SouthEast Asia No. 7: Bamboos. Backhuys Publishers, Leiden, Netherlands, Pages: 189.
Hamid, N.H., O. Sulaiman, A. Mohammad and N.A. Ludin, 2012. The decay resistance and hyphae penetration of bamboo Gigantochloa scortechinii decayed by white and brown rot fungi. Int. J. For. Res., 10.1155/2012/572903
Huang, D.S., A.P. Zhou, H.T. Li, Y. Su and G. Chen, 2012. Experimental study on the tensile properties of bamboo related to its distribution of vascular bundles. Key Eng. Mater., 517: 112117. Direct Link 
Inoue, A., S. Sakamoto, H. Suga and F. Kitahara, 2011. Estimation of culm volume for bamboo, Phyllostachys bambusoides, by twoway volume equation. Biomass Bioenergy, 35: 26662673. CrossRef 
Jennings, G., 1994. Modern Geometry with Applications. Springer, Germany.
Jiang, Z., F. Chen, G. Wang, X. Liu, S.Q. Shi and H.T. Cheng, 2012. The circumferential mechanical properties of bamboo with uniaxial and biaxial compression tests. Bioresources, 7: 48064816. Direct Link 
Kamar, K.A.M., Z.A. Hamid, M.K. Ghani, C. Egbu and M. Arif, 2010. Collaboration initiative on green construction and sustainability through Industrialized Buildings Systems (IBS) in the Malaysian construction industry. Int. J. Sustainable Constr. Eng. Technol., 1: 119127. Direct Link 
Kleinhenz, V. and D.J. Midmore, 2001. Aspects of bamboo agronomy. Adv. Agron., 74: 99153. CrossRef  Direct Link 
Kretschmann, D.E., 2010. Stress grades and design properties for lumber, round timber and ties. General Technical Report FPLGTR190 National, Chapter 7, Forest Products Laboratory, USDA Forest Service, USA. http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr190/chapter_07.pdf.
Lam, P.T.I., E.H.W. Chan, C.K. Chau, C.S. Poon and K.P. Chun, 2011. Environmental management system vs green specifications: How do they complement each other in the construction industry? J. Environ. Manage., 92: 788795. CrossRef  PubMed 
Li, H. and S. Shen, 2011. The mechanical properties of bamboo and vascular bundles. J. Mater. Res., 26: 27492756. CrossRef 
Nash, W.A., 1998. Schaum's Outline for Theory and Problems of Strength of Materials. McGrawHill, USA.
Nath, A.J., D.C. Franklin, M.J. Lawes, M.C. Das and A.K. Das, 2012. Impact of culm harvest on seed production in a mnocarpic bamboo. Biotropica, 44: 699704. CrossRef 
Nugroho, N. and E.T. Bahtiar, 2012. Bamboo taper effect on center point bending test. J. Phys. Sci. Appl., 2: 386391. Direct Link 
Olson, P. and R. Deguen, 2012. Eccentricity of the geomagnetic dipole caused by lopsided inner core growth. Nat. Geosci., 5: 565569. CrossRef 
Sakaray, H.N.V., V.K. Togati and I.V.R. Reddy, 2012. Investigation on properties of bamboo as reinforcing material in concrete. Inter. J. Engin. Res. Appl., 2: 077083. Direct Link 
Schulgasser, K. and A. Witztum, 1992. On the strength, stiffness and stability of tubular plant stems and leaves. J. Theor. Biol., 155: 497510. CrossRef 
Sharma, B., K.A. Harries and K. Ghavami, 2013. Methods of determining transverse mechanical properties of fullculm bamboo. Constr. Build. Mater., 38: 627637. CrossRef 
Symonds, J., J.P. Vidosic, H.V. Hawkins and D.D. Dodge, 1996. Strength of Materials. In: Marks Standard Handbook for Mechanical Engineers, Avalone, E.A. and T. Baumeister (Eds.). 10th Edn. McGrawHill, USA.
Tam, C.M., V.W.Y. Tam and W.S. Tsui, 2004. Greenconstruction assessment for environmental management in the construction industry of Hong Kong. Int. J. Project Manage., 22: 563571. CrossRef 
Van der Lugt, P., A.A.J.F. van den Dobbelstee and J.J.A. Janssen, 2006. An environmental, economic and practical assessment of bamboo as a building material for supporting structures. Constr. Build. Mater., 20: 648656. CrossRef  Direct Link 
Van der Lugt, P., J.G. Vogtlander, J.H. van der Vegte and J.C. Brezet, 2012. Life cycle assessment and carbon sequestration: The environmental impact of industrial Bamboo products. Proceedings of the 9th World Bamboo Congress, April 10, 2012, Antwerp, Belgium, pp: 7385.
Verma, C.S., V.M. Chariar and R. Purohit, 2012. Tensile strength analysis of bamboo and layered laminate bamboo composites. Int. J. Eng. Res. Appl., 2: 12531264. Direct Link 
Vogtlander, J., P. van der Lugt and H. Brezet, 2010. The sustainability of bamboo products for local and Western European applications: LCAs and landuse. J. Cleaner Prod., 18: 12601269. CrossRef 
Wegst, U.G.K., 2011. Bending efficiency through property gradients in bamboo, palm and woodbased composites. J. Mech. Behav. Biomed. Mater., 4: 744755. CrossRef  PubMed 
Yu, H.Q., Z.H. Jiang, C.Y. Hse and T.F. Shupe, 2008. Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens). J. Trop. For. Sci., 20: 258263. Direct Link 
Yu, W.K., K.F. Chung and S.L. Chan, 2003. Column buckling of structural bamboo. Eng. Struct., 25: 755768. CrossRef 



