Subscribe Now Subscribe Today
Research Article
 

Quantification of Isoprostanes as an Index of Oxidative Stress: A Update



Huiyong Yin , Erik S. Musiek and Jason D. Morrow
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Isoprostanes are prostaglandin-like compounds formed from the free radical-catalyzed peroxidation of arachidonic acid independent of the cyclooxygenase enzymes. The isoprostanes possess potent biological activity and likely mediate certain aspects of the detrimental effects of oxidant stress. The purpose of this study was to summarize the current knowledge regarding novel aspects related to the biochemistry of isoprostane formation and analytical methods by which these compounds are analyzed. A considerable portion of this review deals with the utility of measuring isoprostanes as markers of oxidant injury both in vitro and in vivo. A number of studies have shown that these compounds are extremely accurate indices of lipid peroxidation in animal models of oxidative stress and in certain human diseases. Thus the isoprostanes may have an important role in the pathophysiology of oxidant injury associated with a number of human disorders.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Huiyong Yin , Erik S. Musiek and Jason D. Morrow , 2006. Quantification of Isoprostanes as an Index of Oxidative Stress: A Update. Journal of Biological Sciences, 6: 469-479.

DOI: 10.3923/jbs.2006.469.479

URL: https://scialert.net/abstract/?doi=jbs.2006.469.479

REFERENCES
1:  Aleynik, S.I., M.A. Leo, M.K. Aleynik, C.S. Lieber, 1998. Increased circulating products of lipid peroxidation in patients with alcoholic liver disease. Alcohol Clinc. Exp. Res., 22: 192-196.
Direct Link  |  

2:  Awad, J.A., J.D. Morrow, K.E. Hill, L.J. Roberts and R.F. Burk, 1994. Detection and localization of lipid peroxidation in selenium- and vitamin-E deficient rats using F2-isoprostanes. J. Nutr., 124: 810-816.
Direct Link  |  

3:  Basu, S., 2004. Isoprostanes: Novel bioactive products of lipid peroxidation. Free Rad. Res., 38: 105-122.
PubMed  |  Direct Link  |  

4:  Bohnstedt, K.C., B. Karlberg, L.O. Wahlund, M.E. Jonhagen, H. Basun and S. Schmidt, 2003. Determination of isoprostanes in urine samples from Alzheimer patients using porous graphitic carbon liquid chromatography-tandem mass spectrometry. J. Chromatogr., 796: 11-19.
Direct Link  |  

5:  Boushey, C.J., S.A. Beresford, G.S. Omenn and A.G. Motulsky, 1995. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: Probable benefits of increasing folic acid intakes. J. Am. Med. Assoc., 274: 1049-1057.
CrossRef  |  Direct Link  |  

6:  Carpenter, C.T., P.V. Price and B.W. Christman, 1998. Exhaled breath condensate isoprostanes are elevated in patients with acute lung injury or ARDS. Chest, 114: 1653-1659.
Direct Link  |  

7:  Corey, E.J. and Z. Wang, 1994. Conversion of arachidonic acid to the prostaglandin endoperoxide PGG2, a chemical analog of the biosynthetic pathway. Tetrahedron Lett., 35: 539-544.

8:  Davi, G., P. Alessandrini, A. Mezzetti, G. Minotti and T. Bucciarelli et al., 1997. In vivo formation of 8-epi-prostaglandin F2{α} is increased in hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol., 17: 3230-3235.
PubMed  |  Direct Link  |  

9:  Davies, S.S., V. Amarnath, I. Roberts and L. Jackson, 2004. Isoketals: Highly reactive [gamma]-ketoaldehydes formed from the H2-isoprostane pathway. Chem. Phys. Lipids, 128: 85-99.
PubMed  |  Direct Link  |  

10:  Fam, S.S. and J.D. Morrow, 2003. The isoprostanes: Unique products of arachidonic acid oxidation-a review. Curr. Med. Chem., 10: 1723-1740.
Direct Link  |  

11:  Feillet-Coudray, C., R. Tourtauchaux, M. Niculescu, E. Rock and I. Tauveron et al., 1999. Plasma levels of 8-epiPGF2[α] an in vivo marker of oxidative stress, are not affected by aging or Alzheimer's disease. Free Rad. Biol. Med., 27: 463-469.

12:  Frei, B., T.M. Forte, B.N. Ames, C.E. Cross, 1991. Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective Effects Ascorbic Acid. Biochem. J., 277: 133-138.

13:  Gao, L., W.E. Zackert, J.J. Hasford, M.E. Danekis and G.L. Milne et al., 2003. Formation of prostaglandins E2 and D2 via the isoprostane pathway: A mechanism for the generation of bioactive prostaglandins independent of cyclooxygenase. J. Biol. Chem., 278: 28479-28489.
PubMed  |  Direct Link  |  

14:  Gniwotta, C., J.D. Morrow, L.J. Roberts and H. II, Kuhn, 1997. Prostaglandin F2-like compounds, F2-Isoprostanes are present in increased amounts in human atherosclerotic lesions. Arterioscler Thromb Vasc. Biol., 17: 3236-3241.
PubMed  |  Direct Link  |  

15:  Gopaul, N.K., J. Nourooz-Zadeh, A.I. Mallet and E.E. Anggard, 1994. Formation of F2-isoprostanes during aortic endothelial cell-mediated oxidation of low density lipoprotein. FEBS Lett., 348: 297-300.
Direct Link  |  

16:  Gopaul, N.K., E.E. Anggard, A.I. Mallet, D.J. Betteridge, S.P. Wolff and J. Nourooz-Zadeh, 1995. Plasma 8-epi-PGF2[α] levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett., 368: 225-229.

17:  Halliwell, B. and M. Grootveld, 1987. The measurement of free radical reactions in humans. Some thoughts for future experimentation. FEBS Lett., 213: 9-14.
CrossRef  |  PubMed  |  Direct Link  |  

18:  Holt, S., B. Reeder, M. Wilson, S. Harvey, J.D. Morrow, L.J. Roberts II and K. Moore, 1999. Increased lipid peroxidation in patients with rhabdomyolysis. Lancet, 353: 1241-1241.
PubMed  |  Direct Link  |  

19:  Kadiiska, M.B., B.C. Gladen, D.D. Baird, D. Germolec and L.B. Graham et al., 2005. Biomarkers of oxidative stress study II: Are oxidation products of lipids, proteins and DNA markers of CCl4 poisoning? Free Radic. Biol. Med., 38: 698-710.
CrossRef  |  PubMed  |  Direct Link  |  

20:  Kadiiska, M.B., B.C. Gladen, D.D. Baird, L.B. Graham and C.E. Parker et al., 2005. Biomarkers of oxidative stress study: III. Effects of the nonsteroidal anti-inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl4 poisoning. Free Rad. Biol. Med., 38: 711-718.
Direct Link  |  

21:  Kannel, W.B., 1981. Update on the role of cigarette smoking in coronary artery disease. Am. Heart J., 101: 319-328.
PubMed  |  Direct Link  |  

22:  Kenar, J.A., C.M. Havrilla, N.A. Porter, J.R. Guyton, S.A. Brown, K.R. Klemp and E. Selinger, 1996. Identification and quantification of the regioisomeric cholesteryl linoleate hydroperoxides in oxidized human low density lipoprotein and high density lipoprotein. Chem. Res. Toxicol., 9: 737-744.
Direct Link  |  

23:  Koulouris, S., B. Frei, J.D. Morrow, J. Keaney and J.A. Vita, 1995. Increased oxidative stress in patients with diabetes-mellitus. Circulation, 92: 479-479.

24:  Lawson, J.A., J. Rokach and G.A. FitzGerald, 1999. Isoprostanes: Formation, analysis and use as indices of lipid peroxidation in vivo. J. Biol. Chem., 274: 24441-24444.
PubMed  |  Direct Link  |  

25:  Liang, Y., P. Wei, R.W. Duke, P.W. Reaven, S.M. Harman, R.G. Cutler and C.B. Heward, 2003. Quantification of 8-iso-prostaglandin-F2 and 2,3-dinor-8-iso-prostaglandin-F2α in human urine using liquid chromatography-tandem mass spectrometry. Free Radic Biol. Med., 34: 409-418.
CrossRef  |  Direct Link  |  

26:  Li, H., J.A. Lawson, M. Reilly, M. Adiyaman, S.W. Hwang, J. Rokach and G.A. FitzGerald, 1999. Quantitative high performance liquid chromatography/tandem mass spectrometric analysis of the four classes of F2-isoprostanes in human urine. PNAS., 96: 13381-13386.
Direct Link  |  

27:  Longmire, A.W., L.J. Roberts and J.D. Morrow, 1994. Actions of the E2-isoprostane, 8-ISO-PGE2, on the platelet thromboxane/endoperoxide receptor in humans and rats: Additional evidence for the existence of a unique isoprostane receptor. Prostaglandins, 48: 247-256.
PubMed  |  Direct Link  |  

28:  Lynch, S.M., J.D. Morrow, L.J. Roberts and B. Frei, 1994. Formation of non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in plasma and low density lipoprotein exposed to oxidative stress in vitro. J. Clin. Invest., 93: 998-1004.
CrossRef  |  Direct Link  |  

29:  Markesberry, W.R., 1997. Oxidative stress hypothesis in alzheimer's disease. Free Radic. Biol. Med., 23: 134-147.
PubMed  |  Direct Link  |  

30:  Marin, J.G., S. Cornet, B. Spinnewyn, C. Demerle-Pallardy, M. Auguet and P.E. Chabrier, 2000. BN 80933 Inhibits F2-isoprostane elevation in focal cerebral ischaemia and hypoxic neuronal cultures. Neuroreport, 11: 1357-1360.
PubMed  |  Direct Link  |  

31:  Milne, G.L., G. Zanoni, A. Porta, G. Vidari, E.S. Musiek, M.L. Freeman and J.D. Morrow, 2004. The cyclopentenone product of lipid peroxidation, 15-A2t-Isoprostane is efficiently metabolized by HepG2 cells via conjugation with glutathione. Chem. Res. Toxicol., 17: 17-25.
Direct Link  |  

32:  Milne, G.L., J.R. Seal, C.M. Havrilla, M. Wijtmans and N.A. Porter, 2005. Identification and analysis of products formed from phospholipids in the free radical oxidation of human low density lipoproteins. J. Lipid Res., 46: 307-319.
PubMed  |  Direct Link  |  

33:  Montine, T.J., W.R. Markesberry, J.D. Morrow and L.J. Roberts, Jr., 1998. Cerebrospinal fluid F-2-isoprostane levels are increased in Alzheimer's disease. Ann. Neurol., 44: 410-413.
PubMed  |  Direct Link  |  

34:  Montine, T.J., M.F. Beal, M.E. Cudkowicz, H. O'Donnell, R.A. Margolin et al., 1999. Increased CSF F2-isoprostane concentration in probable AD. Neurology, 52: 562-565.
PubMed  |  Direct Link  |  

35:  Montine, T.J., M.F. Beal, D. Robertson, M.E. Cudkowicz and I. Biaggioni et al., 1999. Cerebrospinal fluid F2-isoprostanes are elevated in Huntington's disease. Neurology, 52: 1104-1105.
PubMed  |  Direct Link  |  

36:  Montine, T.J., J.F. Quinn, D. Milatovic, L.C. Silbert and T. Dang et al., 2002. Peripheral F2-isoprostanes and F4-neuroprostanes are not increased in Alzheimer's disease. Ann. Neurol., 52: 175-179.
Direct Link  |  

37:  Montine, K.S., J.F. Quinn, J. Zhang, J.P. Fessel, I. Roberts, L. Jackson, J.D. Morrow, T.J. Montine, 2004. Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem. Phy. Lipids, 128: 117-124.
PubMed  |  Direct Link  |  

38:  Morrow, J.D., E. Hill, R.F. Burk, T.M. Nammour, K.F. Badr, L.J. Roberts, Jr., 1990. A series of prostaglandin-F2-like compounds are produced in vivo in humans by a noncyclooxygenase. Free Radical Catalyzed Mechanism. Proc. Nat. Acad. Sci. USA., 87: 9383-9387.
PubMed  |  Direct Link  |  

39:  Morrow, J.D., T.M. Harris and L.J. Jr. Roberts, 1990. Noncyclooxygenase oxidative formation of a series of novel prostaglandins-analytical ramfications for measurement of eicosanoids. Anal. Biochem., 184: 1-10.
CrossRef  |  Direct Link  |  

40:  Morrow, J.D., J.A. Awad, H.J. Boss, I.A. Blair and L.J. Roberts, 1992. Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc. Nat. Acad. Sci. USA., 89: 10721-10725.
PubMed  |  Direct Link  |  

41:  Morrow, J.D., B. Frei, A.W. Longmire, J.M. Gaziano and S.M. Lynch et al., 1995. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers-smoking as a cause of oxidative damage. Engl. J. Med., 332: 1198-1203.
PubMed  |  Direct Link  |  

42:  Morrow, J.D., I. Roberts and L. Jackson, 1999. Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods Enzymol. Acad. Press, 300: 3-12.

43:  Morrow, J.D., W.E. Zackert, J.P. Yang, E.H. Kurhts, D. Callewaert et al., 1999. Quantification of the Major Urinary Metabolite of 15-F2t-Isoprostane (8-iso-PGF2[α]) by a stable isotope dilution mass spectrometric assay. Analytical Biochem., 269: 326-331.

44:  Morrow, J.D. and L.J. Roberts, 1997. The isoprostanes: Unique bioactive products of lipid peroxidation. Prog. Lipid Res., 36: 1-21.
PubMed  |  Direct Link  |  

45:  Morrow, J.D., Y. Chen, C.J. Brame, J. Yang and S.C. Sanchez et al., 1999. The Isoprostanes: Unique prostanglandin-like products of free-radical-initiated lipid peroxidation. Drug Metab. Rev., 31: 117-139.
PubMed  |  Direct Link  |  

46:  Morrow, J.D., 2005. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterisocler. Thromb. Vas. Biol., 25: 279-286.
Direct Link  |  

47:  Morales, C.R., E.S. Terry, W.E. Zackert, T.J. Montine and J.D. Morrow, 2001. Improved assay for the quantification of the major urinary metabolite of the isoprostane 15-F2t-Isoprostane (8-iso-PGF2[α]) by a stable isotope dilution mass spectrometric assay. Clin. Chim. Acta, 314: 93-99.
CrossRef  |  Direct Link  |  

48:  Musiek, E.S., J.K. Cha, H. Yin, W.E. Zackert and E.S. Terry et al., 2004. Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. J. Chromatogr., 799: 95-102.
Direct Link  |  

49:  Natarajan, R., L. Lanting, N. Gonzales and J. Nadler, 1996. Formation of an F2-isoprostane in vascular smooth muscle cells by elevated glucose and growth factors. Am. J. Physiol. Heart Circ. Physiol., 271: H159-H165.
Direct Link  |  

50:  O'Connor, D.E., E.D. Mihelich and M.C. Coleman, 1981. Isolation and characterization of bicycloendoperoxides derived from methyl linolenate. J. Am. Chem. Soc., 103: 223-224.
CrossRef  |  Direct Link  |  

51:  O'Connor, D.E., E.D. Mihelich and M.C. Coleman, 1984. Stereochemical course of the autooxidative cyclization of lipid hydroperoxides to prostaglandin-like bicyclic endoperoxides. J. Am. Chem. Soc., 106: 3577-3584.
CrossRef  |  Direct Link  |  

52:  Patel, M., L.P. Liang and L.J. Roberts, 2001. Enhanced hippocampal F2-isoprostane formation following kainate-induced seizures. J. Neurochem., 79: 1065-1069.
Direct Link  |  

53:  Porter, N.A., 1986. Mechanisms for the autoxidation of polyunsaturated lipids. Acc. Chem. Res., 19: 262-268.
CrossRef  |  Direct Link  |  

54:  Montine, T.J. and J.D. Morrow, 2005. Fatty acid oxidation in the pathogenesis of alzheimer's disease. Am. J. Pathol., 166: 1283-1289.
Direct Link  |  

55:  Porter, N.A., S.E. Caldwell and K.A. Mills, 1995. Mechanisms of free radical oxidation of unsaturated lipids. Lipids, 30: 277-290.
CrossRef  |  Direct Link  |  

56:  Pratico, D. and G.A. FitzGerald, 1996. Generation of 8-Epiprostaglandin F2a by human monocytes. J. Biol. Chem., 271: 8919-8924.
Direct Link  |  

57:  Pratico, D., L. Iuliano, A. Mauriello, L. Spagnoli and J.A. Lawson et al., 1997. Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J. Clin. Invest., 100: 2028-2034.
CrossRef  |  Direct Link  |  

58:  Pratico, D., O.P. Barry, J.A. Lawson, M. Adiyaman and S.W. Hwang et al., 1998. IPF2α -I: An index of lipid peroxidation in humans. PNAS., 95: 3449-3454.

59:  Pratico, D., R.K. Tangirala, D.J. Rader, J. Rokach and G.A. Fitz-Gerald, 1998. Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nat. Med., 4: 1189-1192.
PubMed  |  Direct Link  |  

60:  Pratico, D., C.M. Clark, V.M.Y. Lee, J.Q. Trojanowski, J. Rokach and G.A. FitzGerald, 2000. Increased 8,12-iso-iPF2-VI in Alzheimer's disease: Correlation of a noninvasive index of lipid peroxidation with disease severity. Ann. Neurol., 48: 809-812.
Direct Link  |  

61:  Pratico, D., K. Uryu, S. Leight, J.Q. Trojanoswki and V.M.Y. Lee, 2001. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of alzheimer amyloidosis. J. Neurosci., 21: 4183-4187.
Direct Link  |  

62:  Pratico, D., C.M. Clark, F. Liun, V.Y.M. Lee and J.Q. Trojanowski, 2002. Increase of brain oxidative stress in mild cognitive impairment: A possible predictor of alzheimer disease. Arch Neurol., 59: 972-976.
PubMed  |  Direct Link  |  

63:  Quan, L.G. and J.K. Cha, 2004. Recent advances in the stereoselective synthesis of isoprostanes and neuroprostanes. Chem. Phys. Lipids, 128: 3-14.
Direct Link  |  

64:  Reich, E.E., W.R. Markesbery, L.J.I. Roberts, L.L. Swift, J.D. Morrow and T.J. Montine, 2001. Brain regional quantification of f-ring and d-/e-ring isoprostanes and neuroprostanes in Alzheimer's Disease. Am. J. Pathol., 158: 293-297.
Direct Link  |  

65:  Reilly, M., N. Delanty, J.A. Lawson, G.A. FitzGerald, 1996. Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation, 94: 19-25.
Direct Link  |  

66:  Reilly, M.P., N. Delanty, L. Roy, J. Rokach and P.O. Callaghan et al., 1997. Increased formation of the isoprostanes IPF2{α}-I and 8-epi-prostaglandin F2{α} in acute coronary angioplasty: Evidence for oxidant stress during coronary reperfusion in humans. Circulation, 96: 3314-3320.

67:  Roberts, L.J., K.P. Moore, W.E. Zackert, J.A. Oates and J.D. Morrow, 1996. Identification of the major urinary metabolite of the F2-isoprostane 8-Iso-prostaglandin F2α in humans. J. Biol. Chem., 271: 20617-20620.
Direct Link  |  

68:  Roberts, Jr. L.J., T.J. Montine, W.R. Markesbery, A.R. Tapper and P. Hardy et al., 1998. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem., 273: 13605-13612.
Direct Link  |  

69:  Roberts, L.J. and J.D. Morrow, 1999. Isoprostanes a Markers of Lipid Peroxidation in Atheriosclerosis. Humana Press, Totowa, NJ., pp: 141.

70:  Roberts, Jr. L.J. and J.D. Morrow, 2000. Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic. Biol. Med., 28: 505-513.

71:  Roberts, I., L. Jackson and J.F. Reckelhoff, 2001. Measurement of F2-isoprostanes unveils profound oxidative stress in aged rats. Biochem. Biophys. Res. Comm., 287: 254-256.
CrossRef  |  Direct Link  |  

72:  Rokach, J., S.P. Khanapure, S.W. Hwang, M. Adiyama, J.A. Lawson and G.A. FitzGerald, 1997. The isoprostanes: A perspective. Prostaglandins, 54: 823-851.
Direct Link  |  

73:  Stein, C.M., S.B. Tanner, J.A. Award, L.J. Roberts and J.D. Morrow, 1996. Evidence of free radical-mediated injury (isoprostane overproduction) in scleroderma. Arth. Rheum., 39: 1146-1150.
Direct Link  |  

74:  Steinberg, D., S. Parhasarathy, T.E. Carew, J.C. Khoo and J.L. Witztum, 1989. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med., 320: 915-924.
PubMed  |  Direct Link  |  

75:  Steinberg, D., 2004. Thematic review series: The Pathogenesis of Atherosclerosis. An interpretive history of the cholesterol controversy: Part I. J. Lipid Res., 45: 1583-1593.
Direct Link  |  

76:  Steinberg, D., 2005. Thematic review series: The Pathogenesis of Atherosclerosis. An interpretive history of the cholesterol controversy: Part II: The early evidence linking hypercholesterolemia to coronary disease in humans. J. Lipid Res., 46: 179-190.
CrossRef  |  Direct Link  |  

77:  Tsan, L., A. Stern, L.J. Roberts and J.D. Morrow, 1999. The isoprostanes: Novel prostaglandin-like products of the free radical-catalyzed peroxidation of arachidonic acid. J. Biomed. Sci., 6: 226-235.
CrossRef  |  Direct Link  |  

78:  Voutilainen, S., J.D. Morrow, L.J. Roberts 2nd, G. Alfthan, H. Alho, K. Nyyssonen and J.T. Salonen, 1999. Enhanced in vivo lipid peroxidation at elevated plasma total homocysteine levels. Arterioscler Thromb. Vasc. Biol., 19: 1263-1266.
Direct Link  |  

79:  Yin, H., C.M. Havrilla, J.D. Morrow and N.A. Porter, 2002. Formation of isoprostane bicyclic endoperoxides from the autoxidation of cholesteryl arachidonate. J. Am. Chem. Soc., 124: 7745-7754.
CrossRef  |  Direct Link  |  

80:  Yin, H. and N.A. Porter, 2003. Specificity of the ferrous oxidation of xylenol orange assay: Analysis of autoxidation products of cholesteryl arachidonate. Anal. Biochem., 313: 319-326.
Direct Link  |  

81:  Yin, H. and N.A. Porter, 2005. New insights regarding the autoxidation of polyunsaturated fatty acids. Antioxidants Redox Signal., 7: 170-184.
Direct Link  |  

82:  Yin, H., C.M. Havrilla, L. Gao, J.D. Morrow and N.A. Porter, 2003. Mechanisms for the formation of isoprostane endoperoxides from arachidonic acid: Dioxetane intermediate or beta-fragmentation of peroxyl radicals?. J. Biol. Chem., 278: 16720-16725.
Direct Link  |  

©  2020 Science Alert. All Rights Reserved