• [email protected]
  • +971 507 888 742
Submit Manuscript
SciAlert
  • Home
  • Journals
  • Information
    • For Authors
    • For Referees
    • For Librarian
    • For Societies
  • Contact
  1. Journal of Biological Sciences
  2. Vol 5 (1), 2005
  3. 70-75
  • Online First
  • Current Issue
  • Previous Issues
  • More Information
    Aims and Scope Editorial Board Guide to Authors Article Processing Charges
    Submit a Manuscript

Journal of Biological Sciences

Year: 2005 | Volume: 5 | Issue: 1 | Page No.: 70-75
DOI: 10.3923/jbs.2005.70.75
crossmark

Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
Research Article

Calumenin and Reticulocalbin are Associated with the Protein Translocase of the Mammalian Endoplasmic Reticulum

Jens Tyedmers, Monika Lerner, Wolfgang Nastainczyk and Richard Zimmermann

ABSTRACT


Transport of precursor proteins into the Endoplasmic Reticulum (ER) requires signal peptides in the precursor proteins and a protein translocase in the ER membrane. Recent findings about the protein translocase of the mammalian ER suggest that the membrane is permeable to small molecules during protein translocation/insertion. Since the ER also plays a central role in calcium homeostasis the question arises of how these two activities of the ER are reconciled. Here two EF-hand proteins of the ER were characterized as associates of protein translocase. A model for the activity of these proteins in protein transport and calcium homeostasis is proposed.
PDF References Citation

How to cite this article

Jens Tyedmers, Monika Lerner, Wolfgang Nastainczyk and Richard Zimmermann, 2005. Calumenin and Reticulocalbin are Associated with the Protein Translocase of the Mammalian Endoplasmic Reticulum. Journal of Biological Sciences, 5: 70-75.

DOI: 10.3923/jbs.2005.70.75

URL: https://scialert.net/abstract/?doi=jbs.2005.70.75

Search


REFERENCES


  1. Palade, G., 1975. Intracellular aspects of the process of protein synthesis. Science, 189: 347-358.

  2. Blobel, G. and B. Dobberstein, 1975. Transfer of proteins across membranes: I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol., 67: 835-851.

  3. Gorlich, D. and T.A. Rapoport, 1993. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell, 75: 615-630.
    PubMed

  4. Hanein, D., K.E.S. Matlack, B. Jungnickel, K. Plath, K.U. Kalies, K.R. Miller, T.A. Rapoport and C.W. Akey, 1996. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell, 87: 721-732.

  5. Beckmann, R., D. Bubeck, R. Grassucci, P. Penczek, A. Verschoor, G. Blobel and J. Frank, 1997. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science, 278: 2123-2126.
    CrossRef

  6. Beckmann, R., C.M.T. Spahn, N. Eswar, J. Helmers, P.A. Penczek, A. Sali, J. Frank and G. Blobel, 2001. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell, 107: 361-372.

  7. Menetret, J.F., A. Neuhof, D.G. Morgan, K. Plath, M. Radermacher, T.A. Rapoport and C.W. Akey, 2000. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell, 6: 1219-1232.

  8. Klappa, P., P. Mayinger, R. Pipkorn, M. Zimmermann and R. Zimmermann, 1991. A microsomal protein is involved in ATP-dependent transport of presecretory proteins into mammalian microsomes. EMBO J., 10: 2795-2803.

  9. Dierks, T., J. Volkmer, G. Schlenstedt, C. Jung and U. Sandholzer et al., 1996. A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum. EMBO J., 15: 6931-6942.

  10. Nicchitta, C.V. and G. Blobel, 1993. Lumenal proteins of the mammalian endoplasmic reticulum are required to complete protein translocation. Cell, 73: 989-998.
    PubMed

  11. Tyedmers, J., M. Lerner, M. Wiedmann, J. Volkmer and R. Zimmermann, 2003. Polypeptide chain binding proteins mediate completion of cotranslational protein translocation into the mammalian endoplasmic reticulum. EMBO Rep., 4: 505-510.
    CrossRef

  12. Brodsky, J.L., J. Goeckeler and R. Schekman, 1995. BiP and Sec63p are required for both co- and posttranslational protein translocation into the yeast endoplasmic reticulum. Proc. Natl. Acad. Sci. USA., 92: 9643-9646.
    Direct Link

  13. Young, B.P., R.A. Craven, P.J. Reid, M. Willer and C.J. Stirling, 2001. Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J., 20: 262-271.
    CrossRef

  14. Meyer, H.A., H. Grau, R. Kraft, S. Kostka, S. Prehn, K.U. Kalies and E. Hartmann, 2000. Mammalian Sec61 is associated with Sec62 and Sec63. J. Biol. Chem., 275: 14550-14557.
    Direct Link

  15. Tyedmers, J., M. Lerner, C. Bies, J. Dudek, M. Skowronek et al., 2000. Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc. Natl. Acad. Sci. USA., 97: 7214-7219.
    Direct Link

  16. Gilmore, R. and G. Blobel, 1985. Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants. Cell, 42: 497-505.
    CrossRef

  17. Simon, S.M., G. Blobel and J. Zimmerberg, 1989. Large aqueous channels in membrane vesicles derived from the rough endoplasmic reticulum of canine pancreas or the plasma membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA., 86: 6176-6180.
    Direct Link

  18. Simon, S.M. and G. Blobel, 1991. A protein-conducting channel in the endoplasmic reticulum. Cell, 65: 371-380.
    CrossRef

  19. Hamman, B.D., J.C. Chen, E.E. Johnson and A.E. Johnson, 1997. The aqueous pore through the translocon has a diameter of 40-60 A during co-translational protein translocation at the ER membrane. Cell, 89: 535-544.
    PubMed

  20. Hamman, B.D., L.M. Hendershot and A.E. Johnson, 1998. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell, 92: 747-758.
    PubMed

  21. Liao, S., J. Lin, H. Do and A.E. Johnson, 1997. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell, 90: 31-41.
    PubMed

  22. Wirth, A., M. Jung, C. Bies, M. Frien, J. Tyedmers, R. Zimmermann and R. Wagner, 2003. The Sec61p complex is a dynamic precursor activated channel. Mol. Cell, 12: 261-268.
    PubMed

  23. Ozawa, M. and T. Muramatsu, 1993. Reticulocalbin, a novel endoplasmic reticulum resident Ca2+-binding protein with multiple EF-hand motifs and a carboxyl-terminal HDEL sequence. J. Biol. Chem., 268: 699-705.

  24. Yabe, D., T. Nakamura, N. Kanazawa, K. Tashiro and T. Honjo, 1997. Calumenin, a Ca2+-binding protein retained in the endoplasmic reticulum with a novel carboxyl-terminal sequence, HDEF. J. Biol. Chem., 272: 18232-18239.
    CrossRef

  25. Van, P.N., F. Peter and H.D. Soling, 1989. Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. J. Biol. Chem., 264: 17494-17501.
    PubMed

  26. Frien, M., M. Jung, C. Volzing and R. Zimmerman, 2003. The rough endoplasmic reticulum: A proteomic approach. Research Signpost Recent Res. Dev. Bioch, 4: 113-124.

  27. Sambrook, J.F., 1990. The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell, 61: 197-199.
    PubMed

  28. Honore, B. and H. Vorum, 2000. The CREC family, a novel family of multiple EF-hand, low-affinity Ca2+-binding proteins localized to the secretory pathway of mammalian cells. FEBS Lett., 466: 11-18.

  29. Heritage, D. and W.F. Wonderlin, 2001. Translocon pores in the endoplasmic reticulum are permeable to a neutral, polar molecule. J. Biol. Chem., 276: 22655-22662.
    CrossRef

  30. Roy, A. and W.F. Wonderlin, 2003. The permeability of the endoplasmic reticulum is dynamically coupled to protein synthesis. J. Biol. Chem., 278: 4397-4403.

  31. Vorum, H., H. Hager, B.M. Christensen, S. Nielsen and B. Honore, 1999. Human Calumenin localizes to the secretory pathway ans is secreted to the medium. Exp. Cell Res., 248: 473-481.

  32. Van den Berg, B., W.M. Clemons, I. Collinson, Y. Modis, E. Hartmann, S.C. Harrison and T.A. Rapoport, 2004. X-ray structure of a protein-conducting channel. Nature, 427: 36-44.

  33. Le-Gall, S., A. Neuhof and T. Rapoport, 2003. The endoplasmic reticulum is permeable to small molecules. Mol. Biol. Cell, 15: 447-455.

Search


Leave a Comment


Your email address will not be published. Required fields are marked *

Useful Links

  • Journals
  • For Authors
  • For Referees
  • For Librarian
  • For Socities

Contact Us

Office Number 1128,
Tamani Arts Building,
Business Bay,
Deira, Dubai, UAE

Phone: +971 507 888 742
Email: [email protected]

About Science Alert

Science Alert is a technology platform and service provider for scholarly publishers, helping them to publish and distribute their content online. We provide a range of services, including hosting, design, and digital marketing, as well as analytics and other tools to help publishers understand their audience and optimize their content. Science Alert works with a wide variety of publishers, including academic societies, universities, and commercial publishers.

Follow Us
© Copyright Science Alert. All Rights Reserved