ABSTRACT
Posttranscriptional controls play important roles in the determination of gene expression. A major component of the regulation of gene expression is exerted at the level of mRNA stability. mRNAs can differ dramatically in their intrinsic stabilities. Eukaryotic mRNAs have a considerable range of half–lives, from as short as few minutes to as long as several days. In parallel, specific mRNA decay pathways may also occur to control the quality of mRNA prior to translation. Nonsense–mediated mRNA decay (NMD) is an example of a posttranscriptional mechanism that is used by cells to survey mRNA quality. By degrading abnormal transcripts that prematurely terminate translation, NMD prevents the production of truncated proteins that could have a dominant–negative effect for the cell. Thus, the stability of individual mRNAs reflects the interaction of general determinants with mRNA–specific sequence elements and trans–acting proteins that function to dictate mRNA turnover. In this review, we present the major current conceived mechanisms that specify the stability of the normal human β–globin mRNA, as well as the surveillance mechanism of nonsense–mediated mRNA decay, emphasizing aspects specific for this transcript.
PDF References Citation
How to cite this article
Angela Inacio, Ana LuiSilva and Luisa Romao, 2005. Mechanisms of the Human β-globin mRNA Stability. Journal of Biological Sciences, 5: 21-32.
DOI: 10.3923/jbs.2005.21.32
URL: https://scialert.net/abstract/?doi=jbs.2005.21.32
DOI: 10.3923/jbs.2005.21.32
URL: https://scialert.net/abstract/?doi=jbs.2005.21.32
REFERENCES
- Sachs, A.B., P. Sarnow and H.W. Hentze, 1997. Starting at the beginning, middle and end: Translation initiation in eukaryotes. Cell, 89: 831-838.
PubMedDirect Link - Li, X.A. and D.C. Beebe, 1991. Messenger RNA stabilization in chicken lens development: A reexamination. Dev. Biol., 146: 239-241.
PubMedDirect Link - Hamalainen, L., J. Oikarinen and K.I. Kivirikko, 1985. Synthesis and degradation of type I procollagen mRNAs in cultured human skin fibroblasts and the effect of cortisol. J. Biol. Chem., 260: 720-725.
PubMedDirect Link - Aviv, H., Z. Voloch, R. Bastos and S. Levy, 1976. Biosynthesis and stability of globin mRNA in cultured erythroleukemic friend cells. Cell, 8: 495-503.
CrossRef - Ross, J. and T.D. Sullivan, 1985. Half-lives of beta and gamma globin messenger RNAs and of protein synthetic capacity in cultured human reticulocytes. Blood, 66: 1149-1154.
PubMedDirect Link - Hunt, J.A., 1974. Half-life and rate of synthesis of globin messenger ribonucleic acid. Determination of half-life of messenger ribonucleic acid and its relative synthetic rate in erythroid cells. Biochem. J., 138: 487-498.
PubMedDirect Link - Bastos, R.N. and H. Aviv, 1977. Theoretical analysis of a model for globin messenger RNA accumulation during erythropoiesis. J. Mol. Biol., 110: 205-218.
CrossRef - Kabnick, K.S. and D.E. Housman, 1988. Determinants that contribute to cytoplasmic stability of human c-fos and beta-globin mRNAs are located at several sites in each mRNA. Mol. Cellular Biol., 8: 3244-3250.
Direct Link - Volloch, V. and D. Housman, 1982. Terminal differentiation of murine erythroleukemia cells: Physical stabilization of end-stage cells. J. Cellular Biol., 93: 390-394.
Direct Link - Bastos, R.N., Z. Volloch and H. Aviv, 1977. Messenger RNA population analysis during erythroid differentiation: a kinetical approach. J. Mol. Biol., 110: 191-203.
CrossRef - Krowczynska, A., R. Yenofsky and G. Brawerman, 1985. Regulation of messenger RNA stability in mouse erythroleukemia cells. J. Mol. Biol., 181: 231-239.
PubMedDirect Link - Ross, J. and A. Pizarro, 1983. Human beta and delta globin messenger RNAs turn over at different rates. J. Mol. Biol., 167: 607-617.
CrossRef - Inacio, A., A.L. Silva, J. Pinto, X. Ji and A. Morgado et al., 2004. Nonsense mutations in close proximity to the initiation codon fail to trigger full nonsense-mediated mRNA decay. J. Biol. Chem., 279: 32170-32180.
PubMedDirect Link - Clegg, J.B., D.J. Weatherall and P.F. Milner, 1971. Haemoglobin constant spring-a chain termination mutant? Nature, 234: 337-340.
PubMedDirect Link - Liebhaber, S.A. and W.W. Kan, 1983. Alpha-thalassemia caused by an unstable alpha-globin mutant. J. Clin. Invest., 71: 461-466.
CrossRefDirect Link - Morales, J., J.E. Russell and S.A. Liebhaber, 1997. Destabilization of human alpha-globin mRNA by translation anti-termination is controlled during erythroid differentiation and is paralleled by phased shortening of the polyA tail. J. Biol. Chem., 272: 6607-6613.
PubMedDirect Link - Wang, X., M. Kiledjian, I.M. Weiss and S.A. Liebhaber, 1995. Detection and characterization of a 3' untranslated region ribonucleoprotein complex associated with human alpha-globin mRNA stability. Mol. Cellular Biol., 15: 1769-1777.
Direct Link - Kiledjian, M., X. Wang and S.A. Liebhaber, 1995. Identification of two KH domain proteins in the alpha-globin mRNP stability complex. EMBO J., 14: 4357-4364.
Direct Link - Kong, J., X. Ji and S.A. Liebhaber, 2003. The KH-domain protein alpha CP has a direct role in mRNA stabilization independent of its cognate binding site. Mol. Cellular Biol., 23: 1125-1134.
CrossRefDirect Link - Makeyev, A.V., D.L. Eastmond and S.A. Liebhaber, 2002. Targeting a KH-domain protein with RNA decoys. RNA, 9: 1160-1173.
PubMedDirect Link - Wang, Z. and M. Kiledjian, 2000. The polyA-binding protein and an mRNA stability protein jointly regulate an endoribonuclease activity. Mol. Cell Biol., 20: 6334-6341.
PubMedDirect Link - Rodgers, N.D., Z. Wang and M. Kiledjian, 2002. Regulated alpha-globin mRNA decay is a cytoplasmic event proceeding through 3'-to-5' exosome-dependent decapping. RNA, 12: 1526-1537.
PubMedDirect Link - Flatz, G., J.L. Kinderlerer, J.V. Kilmartin and H. Lehmann, 1971. Haemoglobin Tak: A variant with additional residues at the end of the beta-chains. Lancet., 7702: 732-733.
PubMedDirect Link - Imai, K. and H. Lehmann, 1975. The oxygen affinity of haemoglobin Tak, a variant with an elongated beta chain. Biochim. Biophys. Acta, 412: 288-294.
PubMedDirect Link - Marotta, C.A., B.G. Forget, M. Cohne-Solal, J.T. Wilson and S.M. Weissman, 1977. Human beta-globin messenger RNA. I. Nucleotide sequences derived from complementary RNA. J. Biol. Chem., 14: 5019-5031.
PubMedDirect Link - Tanphaichitr, V.S., V. Viprakasit, G. Veerakul, K. Sanpakit and P. Tientadakul, 2003. Homozygous hemoglobin Tak causes symptomatic secondary polycythemia in a Thai boy. J. Pediatric Hematol. Oncol., 3: 261-265.
PubMedDirect Link - Weiss, I.M. and S.A. Liebhaber, 1995. Erythroid cell-specific mRNA stability elements in the alpha 2-globin 3' nontranslated region. Mol. Cell. Biol., 15: 2457-2465.
Direct Link - Russell, J.E. and S.A. Liebhaber, 1996. The stability of human beta-globin mRNA is dependent on structural determinants positioned within its 3' untranslated region. Blood, 87: 5314-5323.
PubMedDirect Link - Weiss, I.M. and S.A. Liebhaber, 1994. Erythroid cell-specific determinants of alpha-globin mRNA stability. Mol. Cellular Biol., 14: 8123-8132.
PubMedDirect Link - Sgourou, A., A. Papachatzopoulou, L. Psiouri, M. Antoniou, N. Zoumbos, R. Gibbs and A. Athanassiadou, 2002. The beta-globin C-->G mutation at 6 bp 3' to the termination codon causes beta-thalassaemia by decreasing the mRNA level. Br. J. Haematol., 118: 671-676.
PubMedDirect Link - Russell, J.E., J. Morales and S.A. Liebhaber, 1997. The role of mRNA stability in the control of globin gene expression. Prog. Nuclic Acid Res., 57: 249-287.
CrossRef - Yu, J. and J.E. Russell, 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human beta-globin mRNA. Mol. Cell Biol., 21: 5879-5888.
CrossRef - Bilenoglu, O., A.N. Basak and J.E. Russell, 2002. A 3'UTR mutation affects beta-globin expression without altering the stability of its fully processed mRNA. Br. J. Haematol., 119: 1106-1114.
PubMedDirect Link - Stolle, C.A. and E.J. Jr. Benz, 1988. Cellular factor affecting the stability of beta-globin mRNA. Gene, 1: 65-74.
PubMedDirect Link - Maquat, L.E., 1995. When cells stop making sense: Effects of nonsense codons on RNA metabolism in vertebrate cells., RNA, 1: 453-465.
PubMedDirect Link - Chang, J.C. and Y.W. Kan, 1979. beta 0 thalassemia, a nonsense mutation in man. Proc. Natl. Acad. Sci. USA., 76: 2886-2889.
Direct Link - Kozak, M., 2002. Pushing the limits of the scanning mechanism for initiation of translation. Gene, 299: 1-34.
CrossRefPubMedDirect Link - Maquat, L.E., 2004. Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol., 5: 89-99.
CrossRefDirect Link - Hall, G.W. and S. Thein, 1994. Nonsense codon mutations in the terminal exon of the beta-globin gene are not associated with a reduction in beta-mRNA accumulation: a mechanism for the phenotype of dominant beta-thalassemia. Blood, 83: 2031-2037.
PubMedDirect Link - Dreyfuss, G., V.N. Kim and N. Kataoka, 2002. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol., 3: 195-205.
PubMedDirect Link - Le-Hir, H., D. Gatfield, E. Izaurralde and M.J. Moore, 2001. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J., 20: 4987-4997.
PubMedDirect Link - Zhou, Z., M.J. Luo, K. Straesser, J. Katahira, E. Hurt and R. Reed, 2000. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature, 407: 401-405.
CrossRefDirect Link - Mayeda, A., J. Badolato, R. Kobayashi, M.Q. Zhang, E.M. Gardiner and A.R. Krainer, 1999. Purification and characterization of human RNPS1: A general activator of pre-mRNA splicing. EMBO J., 18: 4560-4570.
CrossRefDirect Link - Blencowe, B.J., R. Issner, J.A. Nickerson and P.A. Sharp, 1998. A coactivator of pre-mRNA splicing. Genes Dev., 12: 996-1009.
PubMedDirect Link - Luo, M.J. and R. Reed, 1999. Splicing is required for rapid and efficient mRNA export in metazoans. Proc. Natl. Acad. Sci. USA., 96: 14937-14942.
PubMedDirect Link - Kataoka, N., M.D. Diem, V.N. Kim, J. Yong and G. Dreyfuss, 2001. Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J., 20: 6424-6433.
CrossRefDirect Link - Palacios, I.M., D. Gatfield, D.S. Johnston and E. Izaurralde, 2004. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature, 427: 753-757.
Direct Link - Shibuya, T., T.O. Tange, N. Sonenberg and M.J. Moore, 2004. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol., 11: 346-351.
CrossRef - McGarvey, T., E. Rosonina, S. McCracken, Q. Li, R. Arnaout and E. Mientjes et al., 2000. The acute myeloid leukemia-associated protein, DEK, forms a splicing-dependent interaction with exon-product complexes. J. Cellular Biol., 150: 309-320.
PubMedDirect Link - Le Hir, H., E. Izaurralde, L.E. Maquat and M.J. Moore, 2000. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J., 19: 6860-6869.
CrossRefDirect Link - Lykke-Andersen, J., M.D. Shu and J.A. Steitz, 2001. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science, 293: 1836-1839.
CrossRefDirect Link - Gehring, N.H., G. Neu-Yilik, T. Schell, M.W. Hentze and A.E. Kulozik, 2003. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell, 11: 939-949.
CrossRefDirect Link - Lau, C.K., M.D. Diem, G. Dreyfuss and G.D. van Duyne, 2003. Structure of the Y14-Magoh core of the exon junction complex. Curr. Biol., 13: 933-941.
CrossRefDirect Link - Fribourg, S., D. Gatfield, E. Izaurralde and E. Conti, 2003. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat. Struct. Biol., 10: 433-439.
CrossRefDirect Link - De Valoir, T., M.A. Tucker, E.J. Belikoff, L.A. Camp, C. Bolduc and K. Beckingham, 1991. A second maternally expressed Drosophila gene encodes a putative RNA helicase of the Proc. Natl. Acad. Sci. USA., 88: 2113-2117.
CrossRefDirect Link - Chan, C.C., J. Dostie, M.D. Diem, W. Feng, M. Mann, J. Rappsilber and G. Dreyfuss, 2004. eIF4A3 is a novel component of the exon junction complex. RNA, 10: 200-209.
PubMedDirect Link - Lykke-Andersen, J., M.D. Shu and J.A. Steitz, 2000. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell, 103: 1121-1131.
CrossRefDirect Link - Serin, G., A. Gersappe, J.D. Black, R. Aronoff and L.E. Maquat, 2001. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol., 21: 209-223.
CrossRefDirect Link - Bhattacharya, A., K. Czaplinski, P. Trifillis, F. He, A. Jacobson and S.W. Peltz, 2000. Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay. RNA, 6: 1226-1235.
Direct Link - Pal, M., Y. Ishigaki, E. Nagy and L.E. Maquat, 2001. Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA, 7: 5-15.
Direct Link - Ohnishi, T., A. Yamashita, I. Kashima, T. Schell and K.R. Anders et al., 2003. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell, 12: 1187-1200.
CrossRefDirect Link - Singh, G. and J. Lykke-Andersen, 2003. New insights into the formation of active nonsense-mediated decay complexes. Trends Biochem. Sci., 28: 464-466.
Direct Link - Ishigaki, Y., X. Li, G. Serin and L.E. Maquat, 2001. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell, 106: 607-617.
CrossRefDirect Link - Wang, W., K. Czaplinski, Y. Rao and S.W. Peltz, 2001. The role of Upf proteins in modulating the translation read‐through of nonsense‐containing transcripts. EMBO J., 20: 880-890.
CrossRefDirect Link - Nakamura, Y., K. Ito and L.A. Isaksson, 1996. Emerging understanding of translation termination. Cell, 87: 147-150.
CrossRefDirect Link - Byers, P.H., 2002. Killing the messenger: new insights into nonsense-mediated mRNA decay. J. Clin. Invest., 109: 3-6.
PubMedDirect Link - Beelman, C.A. and R. Parker, 1995. Degradation of mRNA in eukaryotes. Cell, 81: 179-183.
PubMedDirect Link