• [email protected]
  • +971 507 888 742
Submit Manuscript
SciAlert
  • Home
  • Journals
  • Information
    • For Authors
    • For Referees
    • For Librarian
    • For Societies
  • Contact
  1. Journal of Biological Sciences
  2. Vol 5 (1), 2005
  3. 21-32
  • Online First
  • Current Issue
  • Previous Issues
  • More Information
    Aims and Scope Editorial Board Guide to Authors Article Processing Charges
    Submit a Manuscript

Journal of Biological Sciences

Year: 2005 | Volume: 5 | Issue: 1 | Page No.: 21-32
DOI: 10.3923/jbs.2005.21.32
crossmark

Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
Research Article

Mechanisms of the Human β-globin mRNA Stability

Angela Inacio, Ana LuiSilva and Luisa Romao

ABSTRACT


Posttranscriptional controls play important roles in the determination of gene expression. A major component of the regulation of gene expression is exerted at the level of mRNA stability. mRNAs can differ dramatically in their intrinsic stabilities. Eukaryotic mRNAs have a considerable range of half–lives, from as short as few minutes to as long as several days. In parallel, specific mRNA decay pathways may also occur to control the quality of mRNA prior to translation. Nonsense–mediated mRNA decay (NMD) is an example of a posttranscriptional mechanism that is used by cells to survey mRNA quality. By degrading abnormal transcripts that prematurely terminate translation, NMD prevents the production of truncated proteins that could have a dominant–negative effect for the cell. Thus, the stability of individual mRNAs reflects the interaction of general determinants with mRNA–specific sequence elements and trans–acting proteins that function to dictate mRNA turnover. In this review, we present the major current conceived mechanisms that specify the stability of the normal human β–globin mRNA, as well as the surveillance mechanism of nonsense–mediated mRNA decay, emphasizing aspects specific for this transcript.
PDF References Citation

How to cite this article

Angela Inacio, Ana LuiSilva and Luisa Romao, 2005. Mechanisms of the Human β-globin mRNA Stability. Journal of Biological Sciences, 5: 21-32.

DOI: 10.3923/jbs.2005.21.32

URL: https://scialert.net/abstract/?doi=jbs.2005.21.32

Search


REFERENCES


  1. Ross, J., 1995. mRNA stability in mammalian cells. Microbiol. Rev., 59: 423-450.
    PubMedDirect Link

  2. Sachs, A.B., P. Sarnow and H.W. Hentze, 1997. Starting at the beginning, middle and end: Translation initiation in eukaryotes. Cell, 89: 831-838.
    PubMedDirect Link

  3. Li, X.A. and D.C. Beebe, 1991. Messenger RNA stabilization in chicken lens development: A reexamination. Dev. Biol., 146: 239-241.
    PubMedDirect Link

  4. Hamalainen, L., J. Oikarinen and K.I. Kivirikko, 1985. Synthesis and degradation of type I procollagen mRNAs in cultured human skin fibroblasts and the effect of cortisol. J. Biol. Chem., 260: 720-725.
    PubMedDirect Link

  5. Aviv, H., Z. Voloch, R. Bastos and S. Levy, 1976. Biosynthesis and stability of globin mRNA in cultured erythroleukemic friend cells. Cell, 8: 495-503.
    CrossRef

  6. Ross, J. and T.D. Sullivan, 1985. Half-lives of beta and gamma globin messenger RNAs and of protein synthetic capacity in cultured human reticulocytes. Blood, 66: 1149-1154.
    PubMedDirect Link

  7. Hunt, J.A., 1974. Half-life and rate of synthesis of globin messenger ribonucleic acid. Determination of half-life of messenger ribonucleic acid and its relative synthetic rate in erythroid cells. Biochem. J., 138: 487-498.
    PubMedDirect Link

  8. Bastos, R.N. and H. Aviv, 1977. Theoretical analysis of a model for globin messenger RNA accumulation during erythropoiesis. J. Mol. Biol., 110: 205-218.
    CrossRef

  9. Kabnick, K.S. and D.E. Housman, 1988. Determinants that contribute to cytoplasmic stability of human c-fos and beta-globin mRNAs are located at several sites in each mRNA. Mol. Cellular Biol., 8: 3244-3250.
    Direct Link

  10. Volloch, V. and D. Housman, 1982. Terminal differentiation of murine erythroleukemia cells: Physical stabilization of end-stage cells. J. Cellular Biol., 93: 390-394.
    Direct Link

  11. Bastos, R.N., Z. Volloch and H. Aviv, 1977. Messenger RNA population analysis during erythroid differentiation: a kinetical approach. J. Mol. Biol., 110: 191-203.
    CrossRef

  12. Krowczynska, A., R. Yenofsky and G. Brawerman, 1985. Regulation of messenger RNA stability in mouse erythroleukemia cells. J. Mol. Biol., 181: 231-239.
    PubMedDirect Link

  13. Ross, J. and A. Pizarro, 1983. Human beta and delta globin messenger RNAs turn over at different rates. J. Mol. Biol., 167: 607-617.
    CrossRef

  14. Inacio, A., A.L. Silva, J. Pinto, X. Ji and A. Morgado et al., 2004. Nonsense mutations in close proximity to the initiation codon fail to trigger full nonsense-mediated mRNA decay. J. Biol. Chem., 279: 32170-32180.
    PubMedDirect Link

  15. Clegg, J.B., D.J. Weatherall and P.F. Milner, 1971. Haemoglobin constant spring-a chain termination mutant? Nature, 234: 337-340.
    PubMedDirect Link

  16. Liebhaber, S.A. and W.W. Kan, 1983. Alpha-thalassemia caused by an unstable alpha-globin mutant. J. Clin. Invest., 71: 461-466.
    CrossRefDirect Link

  17. Morales, J., J.E. Russell and S.A. Liebhaber, 1997. Destabilization of human alpha-globin mRNA by translation anti-termination is controlled during erythroid differentiation and is paralleled by phased shortening of the polyA tail. J. Biol. Chem., 272: 6607-6613.
    PubMedDirect Link

  18. Wang, X., M. Kiledjian, I.M. Weiss and S.A. Liebhaber, 1995. Detection and characterization of a 3' untranslated region ribonucleoprotein complex associated with human alpha-globin mRNA stability. Mol. Cellular Biol., 15: 1769-1777.
    Direct Link

  19. Kiledjian, M., X. Wang and S.A. Liebhaber, 1995. Identification of two KH domain proteins in the alpha-globin mRNP stability complex. EMBO J., 14: 4357-4364.
    Direct Link

  20. Kong, J., X. Ji and S.A. Liebhaber, 2003. The KH-domain protein alpha CP has a direct role in mRNA stabilization independent of its cognate binding site. Mol. Cellular Biol., 23: 1125-1134.
    CrossRefDirect Link

  21. Makeyev, A.V., D.L. Eastmond and S.A. Liebhaber, 2002. Targeting a KH-domain protein with RNA decoys. RNA, 9: 1160-1173.
    PubMedDirect Link

  22. Wang, Z. and M. Kiledjian, 2000. The polyA-binding protein and an mRNA stability protein jointly regulate an endoribonuclease activity. Mol. Cell Biol., 20: 6334-6341.
    PubMedDirect Link

  23. Rodgers, N.D., Z. Wang and M. Kiledjian, 2002. Regulated alpha-globin mRNA decay is a cytoplasmic event proceeding through 3'-to-5' exosome-dependent decapping. RNA, 12: 1526-1537.
    PubMedDirect Link

  24. Flatz, G., J.L. Kinderlerer, J.V. Kilmartin and H. Lehmann, 1971. Haemoglobin Tak: A variant with additional residues at the end of the beta-chains. Lancet., 7702: 732-733.
    PubMedDirect Link

  25. Imai, K. and H. Lehmann, 1975. The oxygen affinity of haemoglobin Tak, a variant with an elongated beta chain. Biochim. Biophys. Acta, 412: 288-294.
    PubMedDirect Link

  26. Marotta, C.A., B.G. Forget, M. Cohne-Solal, J.T. Wilson and S.M. Weissman, 1977. Human beta-globin messenger RNA. I. Nucleotide sequences derived from complementary RNA. J. Biol. Chem., 14: 5019-5031.
    PubMedDirect Link

  27. Tanphaichitr, V.S., V. Viprakasit, G. Veerakul, K. Sanpakit and P. Tientadakul, 2003. Homozygous hemoglobin Tak causes symptomatic secondary polycythemia in a Thai boy. J. Pediatric Hematol. Oncol., 3: 261-265.
    PubMedDirect Link

  28. Weiss, I.M. and S.A. Liebhaber, 1995. Erythroid cell-specific mRNA stability elements in the alpha 2-globin 3' nontranslated region. Mol. Cell. Biol., 15: 2457-2465.
    Direct Link

  29. Russell, J.E. and S.A. Liebhaber, 1996. The stability of human beta-globin mRNA is dependent on structural determinants positioned within its 3' untranslated region. Blood, 87: 5314-5323.
    PubMedDirect Link

  30. Weiss, I.M. and S.A. Liebhaber, 1994. Erythroid cell-specific determinants of alpha-globin mRNA stability. Mol. Cellular Biol., 14: 8123-8132.
    PubMedDirect Link

  31. Sgourou, A., A. Papachatzopoulou, L. Psiouri, M. Antoniou, N. Zoumbos, R. Gibbs and A. Athanassiadou, 2002. The beta-globin C-->G mutation at 6 bp 3' to the termination codon causes beta-thalassaemia by decreasing the mRNA level. Br. J. Haematol., 118: 671-676.
    PubMedDirect Link

  32. Russell, J.E., J. Morales and S.A. Liebhaber, 1997. The role of mRNA stability in the control of globin gene expression. Prog. Nuclic Acid Res., 57: 249-287.
    CrossRef

  33. Yu, J. and J.E. Russell, 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human beta-globin mRNA. Mol. Cell Biol., 21: 5879-5888.
    CrossRef

  34. Bilenoglu, O., A.N. Basak and J.E. Russell, 2002. A 3'UTR mutation affects beta-globin expression without altering the stability of its fully processed mRNA. Br. J. Haematol., 119: 1106-1114.
    PubMedDirect Link

  35. Stolle, C.A. and E.J. Jr. Benz, 1988. Cellular factor affecting the stability of beta-globin mRNA. Gene, 1: 65-74.
    PubMedDirect Link

  36. Maquat, L.E., 1995. When cells stop making sense: Effects of nonsense codons on RNA metabolism in vertebrate cells., RNA, 1: 453-465.
    PubMedDirect Link

  37. Chang, J.C. and Y.W. Kan, 1979. beta 0 thalassemia, a nonsense mutation in man. Proc. Natl. Acad. Sci. USA., 76: 2886-2889.
    Direct Link

  38. Kozak, M., 2002. Pushing the limits of the scanning mechanism for initiation of translation. Gene, 299: 1-34.
    CrossRefPubMedDirect Link

  39. Maquat, L.E., 2004. Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol., 5: 89-99.
    CrossRefDirect Link

  40. Hall, G.W. and S. Thein, 1994. Nonsense codon mutations in the terminal exon of the beta-globin gene are not associated with a reduction in beta-mRNA accumulation: a mechanism for the phenotype of dominant beta-thalassemia. Blood, 83: 2031-2037.
    PubMedDirect Link

  41. Dreyfuss, G., V.N. Kim and N. Kataoka, 2002. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol., 3: 195-205.
    PubMedDirect Link

  42. Le-Hir, H., D. Gatfield, E. Izaurralde and M.J. Moore, 2001. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J., 20: 4987-4997.
    PubMedDirect Link

  43. Zhou, Z., M.J. Luo, K. Straesser, J. Katahira, E. Hurt and R. Reed, 2000. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature, 407: 401-405.
    CrossRefDirect Link

  44. Mayeda, A., J. Badolato, R. Kobayashi, M.Q. Zhang, E.M. Gardiner and A.R. Krainer, 1999. Purification and characterization of human RNPS1: A general activator of pre-mRNA splicing. EMBO J., 18: 4560-4570.
    CrossRefDirect Link

  45. Blencowe, B.J., R. Issner, J.A. Nickerson and P.A. Sharp, 1998. A coactivator of pre-mRNA splicing. Genes Dev., 12: 996-1009.
    PubMedDirect Link

  46. Luo, M.J. and R. Reed, 1999. Splicing is required for rapid and efficient mRNA export in metazoans. Proc. Natl. Acad. Sci. USA., 96: 14937-14942.
    PubMedDirect Link

  47. Kataoka, N., M.D. Diem, V.N. Kim, J. Yong and G. Dreyfuss, 2001. Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J., 20: 6424-6433.
    CrossRefDirect Link

  48. Palacios, I.M., D. Gatfield, D.S. Johnston and E. Izaurralde, 2004. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature, 427: 753-757.
    Direct Link

  49. Shibuya, T., T.O. Tange, N. Sonenberg and M.J. Moore, 2004. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol., 11: 346-351.
    CrossRef

  50. McGarvey, T., E. Rosonina, S. McCracken, Q. Li, R. Arnaout and E. Mientjes et al., 2000. The acute myeloid leukemia-associated protein, DEK, forms a splicing-dependent interaction with exon-product complexes. J. Cellular Biol., 150: 309-320.
    PubMedDirect Link

  51. Le Hir, H., E. Izaurralde, L.E. Maquat and M.J. Moore, 2000. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J., 19: 6860-6869.
    CrossRefDirect Link

  52. Lykke-Andersen, J., M.D. Shu and J.A. Steitz, 2001. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science, 293: 1836-1839.
    CrossRefDirect Link

  53. Gehring, N.H., G. Neu-Yilik, T. Schell, M.W. Hentze and A.E. Kulozik, 2003. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell, 11: 939-949.
    CrossRefDirect Link

  54. Lau, C.K., M.D. Diem, G. Dreyfuss and G.D. van Duyne, 2003. Structure of the Y14-Magoh core of the exon junction complex. Curr. Biol., 13: 933-941.
    CrossRefDirect Link

  55. Fribourg, S., D. Gatfield, E. Izaurralde and E. Conti, 2003. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat. Struct. Biol., 10: 433-439.
    CrossRefDirect Link

  56. De Valoir, T., M.A. Tucker, E.J. Belikoff, L.A. Camp, C. Bolduc and K. Beckingham, 1991. A second maternally expressed Drosophila gene encodes a putative RNA helicase of the Proc. Natl. Acad. Sci. USA., 88: 2113-2117.
    CrossRefDirect Link

  57. Chan, C.C., J. Dostie, M.D. Diem, W. Feng, M. Mann, J. Rappsilber and G. Dreyfuss, 2004. eIF4A3 is a novel component of the exon junction complex. RNA, 10: 200-209.
    PubMedDirect Link

  58. Lykke-Andersen, J., M.D. Shu and J.A. Steitz, 2000. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell, 103: 1121-1131.
    CrossRefDirect Link

  59. Serin, G., A. Gersappe, J.D. Black, R. Aronoff and L.E. Maquat, 2001. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol., 21: 209-223.
    CrossRefDirect Link

  60. Bhattacharya, A., K. Czaplinski, P. Trifillis, F. He, A. Jacobson and S.W. Peltz, 2000. Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay. RNA, 6: 1226-1235.
    Direct Link

  61. Pal, M., Y. Ishigaki, E. Nagy and L.E. Maquat, 2001. Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA, 7: 5-15.
    Direct Link

  62. Ohnishi, T., A. Yamashita, I. Kashima, T. Schell and K.R. Anders et al., 2003. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell, 12: 1187-1200.
    CrossRefDirect Link

  63. Singh, G. and J. Lykke-Andersen, 2003. New insights into the formation of active nonsense-mediated decay complexes. Trends Biochem. Sci., 28: 464-466.
    Direct Link

  64. Ishigaki, Y., X. Li, G. Serin and L.E. Maquat, 2001. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell, 106: 607-617.
    CrossRefDirect Link

  65. Wang, W., K. Czaplinski, Y. Rao and S.W. Peltz, 2001. The role of Upf proteins in modulating the translation read‐through of nonsense‐containing transcripts. EMBO J., 20: 880-890.
    CrossRefDirect Link

  66. Nakamura, Y., K. Ito and L.A. Isaksson, 1996. Emerging understanding of translation termination. Cell, 87: 147-150.
    CrossRefDirect Link

  67. Song, H., P. Mugnier, A.K. Das, H.M. Webb, D.R. Evans, M.F. Tuite, B.A. Hemmings and D. Barford, 2000. The crystal structure of human eukaryotic release factor eRF1--mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell, 100: 311-321.

  68. Frolova, L., X. Le-Goff, G. Zhouravleva, E. Davydova, M. Philippe and L. Kisselev, 1996. Eukaryotic polypeptide chain release factor eRF3 is an eRF1-and ribosome-dependent guanosine triphosphatase. RNA, 2: 334-341.

  69. Zhang, J., X. Sun, Y. Qian and L.E. Maquat, 1998. Intron function in the nonsense-mediated decay of beta-globin mRNA: Indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA, 4: 801-815.

  70. Thermann, R., G. Neu-Yilik, A. Deters, U. Frede and K. Wehr et al., 1998. Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J., 17: 3484-3494.

  71. Zhang, J., X. Sun, Y. Qian, J.P. LaDuca and L.E. Maquat, 1998. At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: A possible link between nuclear splicing and cytoplasmic translation. Mol. Cellular Biol., 18: 5272-5283.

  72. Sun, X. and L.E. Maquat, 2000. mRNA surveillance in mammalian cells: The relationship between introns and translation termination. RNA, 6: 1-8.

  73. Nagy, E. and L.E. Maquat, 1998. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci., 23: 198-199.

  74. Huisman, T.H., 1993. The structure and function of normal and abnormal haemoglobins. Baillieres Clin. Haematol., 6: 1-30.

  75. Le-Hir, H., M.J. Moore and L.E. Maquat, 2000. Pre-mRNA splicing alters mRNP composition: Evidence for stable association of proteins at exon-exon junctions. Genes Dev., 14: 1098-1108.

  76. Neu-Yilik, G., N.H. Gehring, R. Thermann, U. Frede, M.W. Hentze and A.E. Kulozik, 2001. Splicing and 3' end formation in the definition of nonsense-mediated decay-competent human beta-globin mRNPs. EMBO J., 20: 532-540.

  77. Ruiz-Echevarria, M.J., C.I. Gonzalez and S.W. Peltz, 1998. Identifying the right stop: determining how the surveillance complex recognizes and degrades an aberrant mRNA. EMBO J., 17: 575-589.

  78. Maquat, L.E. and G.G. Carmichael, 2001. Quality control of mRNA function. Cell, 104: 173-176.

  79. Romao, L., A. Inacio, S. Santos, M. Avila, P. Faustino, P. Pacheco and J. Lavinha, 2000. Nonsense mutations in the human beta-globin gene lead to unexpected levels of cytoplasmic mRNA accumulation. Blood, 96: 2895-2901.

  80. Danckwardt, S., G. Neu-Yilik, R. Thermann, U. Frede, M.W. Hentze and A.E. Kulozik, 2002. Abnormally spliced beta-globin mRNAs: A single point mutation generates transcripts sensitive and insensitive to nonsense-mediated mRNA decay. Blood, 99: 1811-1816.

  81. Zhang, J. and L.E. Maquat, 1997. Evidence that translation reinitiation abrogates nonsense-mediated mRNA decay in mammalian cells. EMBO J., 16: 826-833.

  82. Buzina, A. and M.J. Shulman, 1999. Infrequent translation of a nonsense codon is sufficient to decrease mRNA level. Mol. Biol. Cell, 10: 515-524.

  83. Perrin-Vidoz, L., O.M. Sinilnikova, D. Stoppa-Lyonnet, G.M. Lenoir and S. Mazoyer, 2002. The nonsense-mediated mRNA decay pathway triggers degradation of most BRCA1 mRNAs bearing premature termination codons. Hum. Mol. Genet., 11: 2805-2814.

  84. Asselta, R., S. Duga, T. Simonic, M. Malcovati and E. Santagostino et al., 2000. Afibrinogenemia: First identification of a splicing mutation in the fibrinogen gamma chain gene leading to a major gamma chain truncation. Blood, 96: 2496-2500.

  85. Wang, J., J.P. Gudikote, O.R. Olivas and M.F. Wilkinson, 2002. Boundary-independent polar nonsense-mediated decay. EMBO Rep., 3: 274-279.

  86. Carter, M.S., S. Li and M.F. Wilkinson, 1996. A splicing-dependent regulatory mechanism that detects translation signals. EMBO J., 15: 5965-5975.

  87. Humphries, R.K., T.J. Ley, N.P. Anagnou, A.W. Baur and A.W. Nienhuis, 1984. Beta-39 thalassemia gene: A premature termination codon causes beta-mRNA deficiency without affecting cytoplasmic beta-mRNA stability. Blood, 64: 23-32.

  88. Belgrader, P., J. Cheng and L.E. Maquat, 1993. Evidence to implicate translation by ribosomes in the mechanism by which nonsense codons reduce the nuclear level of human triosephosphate isomerase mRNA. Proc. Natl. Acad. Sci. USA., 90: 482-486.

  89. Cheng, J. and L.E. Maquat, 1993. Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or the half-life of cytoplasmic mRNA. Mol. Cellular Biol., 13: 1892-1902.

  90. Byers, P.H., 2002. Killing the messenger: new insights into nonsense-mediated mRNA decay. J. Clin. Invest., 109: 3-6.
    PubMedDirect Link

  91. Wilkinson, M.F. and A.B. Shyu, 2002. RNA surveillance by nuclear scanning? Nat. Cell Biol., 4: 144-147.

  92. Iborra, F.J. and P.R. Cook, 2002. The interdependence of nuclear structure and function. Curr. Opin. Cell Biol., 14: 780-785.

  93. Muhlemann, O., C.S. Mock-Casagrande, J. Wang, S. Li and N. Custodio et al., 2001. Precursor RNAs harboring nonsense codons accumulate near the site of transcription. Mol. Cell, 8: 33-43.

  94. Brogna, S., T.A. Sato and M. Rosbash, 2002. Ribosome components are associated with sites of transcription. Mol. Cell, 10: 93-104.

  95. Li, S., D. Leonard and M.F. Wilkinson, 1997. T cell receptor (TCR) mini-gene mRNA expression regulated by nonsense codons: a nuclear-associated translation-like mechanism. J. Exp. Med., 185: 985-992.

  96. Buhler, M., M.F. Wilkinson and O. Muhlemann, 2002. Intranuclear degradation of nonsense codon-containing mRNA. EMBO Rep., 3: 646-651.

  97. Bohnsack, M.T., K. Regener, B. Schwappach, R. Saffrich, E. Paraskeva, E. Hartmann and D. Gorlich, 2002. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J., 1: 6205-6215.

  98. Stephenson, L.S. and L.E. Maquat, 1996. Cytoplasmic mRNA for human triosephosphate isomerase is immune to nonsense-mediated decay despite forming polysomes. Biochimie, 78: 1043-1047.
    CrossRefPubMed

  99. Lewis, J.D. and E. Izaurralde, 1997. The role of the cap structure in RNA processing and nuclear export. Eur. J. Biochem., 247: 461-469.

  100. Izaurralde, E., J. Lewis, C. McGuigan, M. Jankowska, E. Darzynkiewicz and I.W. Mattaj, 1994. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell, 78: 657-668.

  101. Visa, N., E. Izaurralde, J. Ferreira, B. Daneholt and I.W. Mattaj, 1996. A nuclear cap-binding complex binds Balbiani ring pre-mRNA cotranscriptionally and accompanies the ribonucleoprotein particle during nuclear export. J. Cellular Biol., 133: 5-14.

  102. Lejeune, F., Y. Ishigaki, X. Li and L.E. Maquat, 2002. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J., 21: 3536-3545.

  103. Chiu, S.Y., F. Lejeune, A.C. Ranganathan and L.E. Maquat, 2004. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev., 18: 745-754.

  104. Kugler, W., J. Enssle, M.W. Hentze and A.E. Kulozik, 1995. Nuclear degradation of nonsense mutated beta-globin mRNA: A post-transcriptional mechanism to protect heterozygotes from severe clinical manifestations of beta-thalassemia? Nucleic Acids Res., 23: 413-418.

  105. Lim, S.K., C.D. Sigmund, K.W. Gross and L.E. Maquat, 1992. Nonsense codons in human beta-globin mRNA result in the production of mRNA degradation products. Mol. Cellular Biol., 12: 1149-1161.

  106. Lim, S., J.J. Mullins, C.M. Chen, K.W. Gross and L.E. Maquat, 1989. Novel metabolism of several beta zero-thalassemic beta-globin mRNAs in the erythroid tissues of transgenic mice. EMBO J., 8: 2613-2619.

  107. Beelman, C.A. and R. Parker, 1995. Degradation of mRNA in eukaryotes. Cell, 81: 179-183.
    PubMedDirect Link

  108. Guhaniyogi, J. and G. Brewer, 2001. Regulation of mRNA stability in mammalian cells. Gene, 265: 11-23.

  109. Muhlrad, D. and R. Parker, 1994. Premature translational termination triggers mRNA decapping. Nature, 370: 578-581.

  110. Peltz, S.W., F. He, E. Welch and A. Jacobson, 1994. Nonsense-mediated mRNA decay in yeast. Prog. Nucleic Acid Res. Mol. Biol., 47: 271-298.

  111. Mitchell, P. and D. Tollervey, 2003. An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3'-->5' degradation. Mol. Cell, 11: 1405-1413.

  112. Cao, D. and R. Parker, 2003. Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell, 113: 533-545.

  113. Lejeune, F., X. Li and L.E. Maquat, 2003. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating and exonucleolytic activities. Mol. Cell, 12: 675-687.

  114. Chen, C.Y. and A.B. Shyu, 2003. Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol. Cellular Biol., 23: 4805-4813.

  115. Schell, T., T. Kocher, M. Wilm, B. Seraphin, A.E. Kulozik and H.W. Hentze, 2003. Complexes between the nonsense-mediated mRNA decay pathway factor human upf1 (up-frameshift protein 1) and essential nonsense-mediated mRNA decay factors in HeLa cells. Biochem. J., 373: 775-783.

  116. Lykke-Andersen, J., 2002. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol. Cellular Biol., 22: 8114-8121.

  117. Couttet, P. and T. Grange, 2004. Premature termination codons enhance mRNA decapping in human cells. Nucleic Acids Res., 32: 488-494.

  118. Stevens, A., Y. Wang, K. Bremer, J. Zhang and R. Hoepfner et al., 2002. Beta-Globin mRNA decay in erythroid cells: UG site-preferred endonucleolytic cleavage that is augmented by a premature termination codon. Proc. Natl. Acad. Sci. USA., 99: 12741-12746.

Search


Leave a Comment


Your email address will not be published. Required fields are marked *

Useful Links

  • Journals
  • For Authors
  • For Referees
  • For Librarian
  • For Socities

Contact Us

Office Number 1128,
Tamani Arts Building,
Business Bay,
Deira, Dubai, UAE

Phone: +971 507 888 742
Email: [email protected]

About Science Alert

Science Alert is a technology platform and service provider for scholarly publishers, helping them to publish and distribute their content online. We provide a range of services, including hosting, design, and digital marketing, as well as analytics and other tools to help publishers understand their audience and optimize their content. Science Alert works with a wide variety of publishers, including academic societies, universities, and commercial publishers.

Follow Us
© Copyright Science Alert. All Rights Reserved