Subscribe Now Subscribe Today
Abstract
Fulltext PDF
References
Research Article
 
Physiological Regulation of Biosynthesis of Phytohormone Indole-3-acetic Acid and Other Indole Derivatives by the Citrus Fungal Pathogen Colletotrichum acutatum



Turksen Shilts , Umran Erturk , Nickash J. Patel and Kuang-Ren Chung
 
ABSTRACT

Present study investigated the regulation and production of phytohormone indole-3-acetic acid (IAA) and other indole derivatives by the fungus Colletotrichum acutatum. Using HPLC and chromogenic stains after fluorescence thin-layer chromatography, biosynthesis of IAA and other indoles, including indole-acetaldehyde (IAAld), indole-acetamide (IAM), indole-lactic acid (ILA), indole-pyruvic acid (IPA) and tryptophol (TOL) were solely dependent on the presence of tryptophan (Trp) and were highly regulated by carbon and nitrogen sources by C. acutatum. As compared to other sources, the production of IAA increased drastically (up to 12-fold) using mannitol or galactose as the sole carbon source, or using ammonium nitrate as the sole nitrogen source, whereas IAA was completely suppressed in the presence of ammonium chloride. The putative pathways for IAA biosynthesis by C. acutatum likely proceeded via Trp/IPA/IAAld and Trp/IAM intermediates. This study provides an opportunity to identify genes involved in IAA biosynthesis by using suppression subtractive hybridization approach and provides a nutrient base for screening IAA non-producing mutants of C. acutatum.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Turksen Shilts , Umran Erturk , Nickash J. Patel and Kuang-Ren Chung , 2005. Physiological Regulation of Biosynthesis of Phytohormone Indole-3-acetic Acid and Other Indole Derivatives by the Citrus Fungal Pathogen Colletotrichum acutatum. Journal of Biological Sciences, 5: 205-210.

DOI: 10.3923/jbs.2005.205.210

URL: https://scialert.net/abstract/?doi=jbs.2005.205.210

REFERENCES
Bartel, B., 1977. Auxin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 51-66.
CrossRef  |  Direct Link  |  

Brandl, M.T. and S.E. Lindow, 1996. Cloning and characterization of a locus encoding an indolepyruvate carboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Applied Environ. Microbiol., 62: 4121-4128.

Brown, H.M. and W.K. Purves, 1980. Indoleacetaldehyde reductase of Cucumis sativus L.: Kinetic properties and role in auxin biosynthesis. Plant Physiol., 65: 107-113.

Chung, K.R., R. Yuan, J.K. Burns and L.W. Timmer, 2002. Involvement of hormones in symptomatology of postbloom fruit drop (PFD) of citrus caused by Colletotrichum acutatum. Phytopathology, 92: S15-S15.

Chung, K.R., T. Shilts, U. Erturk, L.W. Timmer and P.P. Ueng, 2003. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol. Lett., 226: 23-30.

Chung, K.R., T. Shilts, W. Li and L.W. Timmer, 2002. Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol. Lett., 213: 33-39.

Costacurta, A. and J. Vanderleyden, 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol., 21: 1-18.
Direct Link  |  

Diatchenko, L., Y.F. Lau, A.P. Campbell, A. Chenchik and F. Moqadam et al., 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA., 93: 6025-6030.
PubMed  |  Direct Link  |  

Goodman, R.N., Z. Kiraly and K.R. Wood, 1986. The Biochemistry and Physiology of Plant Disease. University of Missouri Press, Columbia, Missouri, ISBN-13: 978-0826203496, Pages: 435.

Li, W., R. Yuan, J.K. Burns, L.W. Timmer and K.R. Chung, 2003. Genes for hormone biosynthesis and regulation are highly expressed in citrus flowers infected with the fungus Colletotrichum acutatum, causal agent of postbloom fruit drop. J. Am. Soc. Hortic. Sci., 128: 578-583.

Manulis, S., H. Shafrir, E. Epstein, A. Lichter and I. Barash, 1994. Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiology, 140: 1045-1050.

Normanly, J., J.P. Slovin and J.D. Cohen, 1995. Rethinking auxin biosynthesis and metabolism. Plant Physiol., 107: 323-329.
Direct Link  |  

Robinson, M., J. Riov and A. Sharon, 1998. Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Applied Environ. Microbiol., 64: 5030-5032.

Shin, M., T. Shinguu, K. Sano and C. Umezawa, 1991. Metabolic fates of L-tryptophan in Saccharomyces uvarum. Chem. Pharm. Bull., 39: 1792-1795.

Sosa-Morales, M.E., F. Guevara-Lara, V.M. Martinez-Juarez and O. Paredes-Lopez, 1997. Production of indole-3-acetic acid by mutant strains of Ustilago maydis (maize smut/huitlacoche). Applied Microbiol. Biotechnol., 48: 726-729.

Timmer, L.W., J.P. Agostini, S.E. Zitko and M. Zulfiqar, 1994. Postbloom fruit drop, an increasingly prevalent disease of citrus in the America`s. Plant Dis., 78: 329-334.

Yamada, T., 1993. The role of auxin in plant-disease development. Ann. Rev. Phytopathol., 31: 253-273.

Yamada, T., H. Tsukamoto, T. Shiraishi, S. Kawamata and H. Oku, 1990. Changes in indoleacetic acid production and chromosome length polymorphisms in clofibric acid resistant mutants of Taphrina wiesneri and Taphrina deformans. Ann. Phytopathol. Soc. Jap., 56: 651-657.

©  2019 Science Alert. All Rights Reserved
Fulltext PDF References Abstract