• [email protected]
  • +971 507 888 742
Submit Manuscript
SciAlert
  • Home
  • Journals
  • Information
    • For Authors
    • For Referees
    • For Librarian
    • For Societies
  • Contact
  1. Journal of Biological Sciences
  2. Vol 5 (2), 2005
  3. 193-200
  • Online First
  • Current Issue
  • Previous Issues
  • More Information
    Aims and Scope Editorial Board Guide to Authors Article Processing Charges
    Submit a Manuscript

Journal of Biological Sciences

Year: 2005 | Volume: 5 | Issue: 2 | Page No.: 193-200
DOI: 10.3923/jbs.2005.193.200
crossmark

Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
Research Article

Keratinolytic Activity of Some Newly Isolated Bacillus Species

Md. Mozammel Hoq, Khandaker Al Zaid Siddiquee, Hiroko Kawasaki and Tatsuji Seki

ABSTRACT


Eight bacillus bacteria newly isolated from the effluents of tannery and poultry farms using a feather enrichment technique were identified on the basis of 16S ribosomal RNA gene sequence analysis, physiological and carbohydrates assimilation tests. Of them, 3 isolates were revealed as the strains of Bacillus licheniformis, two as B. cereus group and one each of B. subtilis, B. borstelensis and B. sphericus. Most of them demonstrated significant levels of keratinolytic protease on keratinous substrates (feather meal or hair keratin) in basal medium as a sole source of carbon, nitrogen and sulphur at 37°C and pH 8.0 in shake culture. Supplementation of yeast extract and molasses with feather in the basal medium increased the enzyme activity by most of the bacillus cultures. Commercial feather meal supported higher activity than that of commercial keratin powder. Of the bacillus species, B. subtilis MZK-7 and three strains of B. licheniformis displayed higher levels of keratinolytic activity under comparable conditions. The enzyme activity was found to be a function of cultivation times by different bacillus cultures. B. borstelensis MZK-6 had reached to its maximum activity after 32 h while the others did the same after 48 to 60 h on feather meal. The hydrolysis of synthetic peptides tested suggests that, among others, the enzymes from B. licheniformis strains and B. subtilis MZK-7 possess high levels of chymotripsin like (active towards Suc-Ala-Ala-Ala-pNA) and proteinase-K, elastase and subtilisin like (active towards Suc-Ala-Ala-Pro-Phe-pNA) protease activities. The protease inhibition studies with the enzymes from B. licheniformis strains and B. subtilis MZK-7 demonstrated the enzyme as serine protease while that of from B. borstenlensis MZK-6 and two strains B. cereus group demonstrated the neutral protease. The present results will be a useful basis for future studies on biotechnological production and application of keratinolytic enzymes.
PDF References Citation

How to cite this article

Md. Mozammel Hoq, Khandaker Al Zaid Siddiquee, Hiroko Kawasaki and Tatsuji Seki, 2005. Keratinolytic Activity of Some Newly Isolated Bacillus Species. Journal of Biological Sciences, 5: 193-200.

DOI: 10.3923/jbs.2005.193.200

URL: https://scialert.net/abstract/?doi=jbs.2005.193.200

Search


REFERENCES


  1. Fraserb, R.D.B., T.P. Macrae, D.A.D. Parry and E. Suzuki, 1969. The structure of β-keratin. Polymer, 10: 810-826.

  2. Onifade, A.A., N.A. Al-Sane, A.A. Al-Musallam and S. Al-Zarban, 1998. A review: Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol., 66: 1-11.
    CrossRefDirect Link

  3. Lahl, W.J. and S.D. Braun, 1994. Enzymatic production of protein hydrolysates for food use. Food Technol., 48: 68-71.
    Direct Link

  4. Mukhopadhyay, R.P. and A.L. Chandra, 1990. Keratinase of a streptomycete. Indian J. Exp. Biol., 28: 575-577.
    Direct Link

  5. Letourneau, F., V. Soussotte, P. Bressoier, P. Brandland and V.V. Verneuil, 1998. Keratinolytic activity of Streptomyces sp. S.K-02: A new isolated strain. Lett. Applied Microbiol., 26: 77-80.

  6. Joo, H.S., C.G. Kumar, G.C. Park, K.T. Kim, S.R. Paik and C.S. Chang, 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem., 38: 155-159.
    CrossRef

  7. Harwood, C.R., 1992. Bacillus subtilis and its relatives: Molecular biological and industrial workhorses. Trends Biotechnol., 10: 247-256.
    CrossRefDirect Link

  8. Han, J., C.H. Park and R. Ruan, 1995. Concentrating alkaline serine protease, subtilisin, using a temperature sensitive hydro-gel. Biotechnol. Lett., 17: 851-852.

  9. Manachini, P.L. and M.G. Fortina, 1998. Production in sea water of a thermostable alkaline protease by a halo tolerant strain of Bacillus lichniformis. Biotechnol. Lett., 20: 565-568.

  10. Williams, C.M., C.S. Richter, J.M. Mackenzie and J.C.H. Shih, 1990. Isolation, identification and characterization of a feather-degrading bacterium. Applied Environ. Microbial., 56: 1509-1515.
    PubMedDirect Link

  11. Lin, X., C.G. Lee, E.S. Casale and J.C.H. Shih, 1992. Purification and Charaterization of a keratinase form feather degrading Bacillus licheniformis strain. Applied Environ. Microbiol. Biotechnol., 58: 3271-3275.

  12. Lin, X., G.D. Ingilis, L.J. Yanke and K.Z. Cheng, 1999. Selection and characterization of feather-degrading bacteria from canola meal compost. J. Ind. Microbiol. Biotechnol., 23: 149-153.
    CrossRef

  13. Lin, X., S.L. Wong, E.S. Miller and J.C.H. Shih, 1997. Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. Subtilis. J. Ind. Microbiol. Biotechnol., 19: 134-138.

  14. Cheng, S.W., H.M. Hu and S.W. Shen, 1995. Production and characterization of keratinase of a feather degrading Bacillus licheniformis PWD-l. Biosci. Biotechnol. Biochem., 59: 2239-2243.
    Direct Link

  15. Evans, K.L., J. Crowder and E.S. Miller, 2000. Subtilisins of Bacillus spp. Hydrolyze keratin and allow grow on feathers. Can. J. Microbiol., 46: 1004-1011.

  16. Rozs, M., L. Manczinger, C. Vagvolgyi, F. Kevei, A. Hochkoeppler and A.G. Vara-y-Rodriguez, 2001. Fermentation characteristics and secretion of proteases of a new keratinolytic strain of Bacillus licheniformis. Biotechnol. Lett., 23: 1925-1929.
    Direct Link

  17. Yamamura, S., Y. Morita, Q. Hasan, K. Yokoyama and E. Tamiya, 2002. Keratin biodegradation: A cooperative action of two enzymes form Stenotrophhomonas sp. Biochem. Biophys. Res. Com., 294: 1138-1143.

  18. Kawasaki, H., Y. Hpshino, A. Hirata and K. Yamasato, 1993. Is intracytoplasmic membrane structure a generic criterion: It is not parallel to phylogenic interrelationship among photosynthetic purple non-sulphur bacteria. Arch. Microbiol., 160: 358-362.
    CrossRef

  19. Brosius, J., T.J. Dull, D.D. Sleeter and H.F. Noller, 1981. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol., 148: 107-127.
    CrossRefPubMedDirect Link

  20. Thompson, J.D., D.G. Higgins and T.J. Gibson, 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680.
    CrossRefPubMedDirect Link

  21. Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120.
    CrossRefDirect Link

  22. Saitou, N. and M. Nei, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425.
    CrossRefPubMedDirect Link

  23. Felsenstein, J., 1985. Confidence limit on phylogenesis an approach using the bootstrap. Evolution, 39: 783-791.

  24. Gradisar, H., S. Kern and I. Friedrich, 2000. Keratinase of Doratomyces microsporous. Applied Microbiol. Biotechnol., 53: 196-200.

  25. Kobayashi, T., Y. Hakamada, S. Adachi, J. Hitomi and T. Yoshimatsue et al., 1995. Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Applied Microbial. Biotechnol., 43: 473-481.
    CrossRef

  26. Kregler, A. and D. Lockwood, 1981. Detection of extra cellular toxins produced by Vibrio vulnificus. Infect. Immunol., 33: 583-590.

  27. Fullbrook, P.D., 1996. Industrial Enzymology. 2nd Edn., MacMillan Press, London.

  28. Brock, T.D., M.T. Madigan, J.M. Martinko and J. Parker, 1997. Biology of Microorganisms. 7th Edn., Prentice Hall International Inc., New Jersey, pp: 237-386.

  29. Sambrook, J., E.F. Fritsch and T.A. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. 2nd Edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA., ISBN-13: 9780879695774, Pages: 397.
    Direct Link

  30. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254.
    CrossRefPubMedDirect Link

  31. Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman, 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res., 25: 3389-3402.
    CrossRefPubMedDirect Link

Search


Related Articles

Leave a Comment


Your email address will not be published. Required fields are marked *

Useful Links

  • Journals
  • For Authors
  • For Referees
  • For Librarian
  • For Socities

Contact Us

Office Number 1128,
Tamani Arts Building,
Business Bay,
Deira, Dubai, UAE

Phone: +971 507 888 742
Email: [email protected]

About Science Alert

Science Alert is a technology platform and service provider for scholarly publishers, helping them to publish and distribute their content online. We provide a range of services, including hosting, design, and digital marketing, as well as analytics and other tools to help publishers understand their audience and optimize their content. Science Alert works with a wide variety of publishers, including academic societies, universities, and commercial publishers.

Follow Us
© Copyright Science Alert. All Rights Reserved