• [email protected]
  • +971 507 888 742
Submit Manuscript
SciAlert
  • Home
  • Journals
  • Information
    • For Authors
    • For Referees
    • For Librarian
    • For Societies
  • Contact
  1. Journal of Biological Sciences
  2. Vol 5 (1), 2005
  3. 10-20
  • Online First
  • Current Issue
  • Previous Issues
  • More Information
    Aims and Scope Editorial Board Guide to Authors Article Processing Charges
    Submit a Manuscript

Journal of Biological Sciences

Year: 2005 | Volume: 5 | Issue: 1 | Page No.: 10-20
DOI: 10.3923/jbs.2005.10.20
crossmark

Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
Research Article

New Insights into Regulation of Type I Collagen Gene Expression

Branko Stefanovic

ABSTRACT


Elucidation of the regulation of type I collagen synthesis is critical for the understanding of pathophysiology of fibroproliferative disorders, wound healing, tissue remodeling and embryonic development. Transcriptional studies have shown that changes in collagen expression could not be explained solely by changes in the transcription rate of the collagen genes. Recently, it was discovered that stability of collagen α1(I) mRNA changes dramatically by culturing fibroblasts in matrix and by treatment with TGFβ, the most potent profibrotic cytokine. Evidence was provided that the signal transduction pathways leading to activation of phosphatidylinositol 3-kinase (PI3K) and ERK1/2 kinases are involved in this regulation. In hepatic stellate cells (HSCs), which are responsible for excessive collagen synthesis in liver fibrosis, stabilization of collagen α1(I) is primarily responsible for 50-70 fold increase in its steady state level. Two cis-acting sequences in collagen α1(I) mRNA have been identified which are responsible for this effect, 5` stem-loop and C-rich region in the 3` untranslated region (UTR). 5` stem-loop is involved in stabilization and translation of α1(I) mRNA in activated collagen producing, HSCs. This RNA element binds cytosolic and nuclear proteins in sequence specific manner. Sequestration of these proteins by a molecular decoy inhibited synthesis of type I a collagen by more than 50%. No binding to the 5` stem-loop was detected in collagen nonproducing quiescent HSCs, where collagen α1(I) mRNA has a short half-life. The 3` C-rich region binds α-CP, a known RNA binding protein involved in stabilization of several long-lived mRNAs. Binding of α-CP can be demonstrated only in extracts of activated HSCs. Differential binding of α-CP probably depends on phosphorylation status of the protein. Cloning of the 5` stem-loop binding proteins and elucidation of the posttranslational modifications of α-CP are critical for complete understanding of regulation of type I collagen synthesis.
PDF References Citation

How to cite this article

Branko Stefanovic, 2005. New Insights into Regulation of Type I Collagen Gene Expression. Journal of Biological Sciences, 5: 10-20.

DOI: 10.3923/jbs.2005.10.20

URL: https://scialert.net/abstract/?doi=jbs.2005.10.20

Search


REFERENCES


  1. Kivirikko, K.I., 1998. Collagen biosynthesis: A mini-review cluster. Matrix Biol., 16: 355-356.

  2. Bitterman, P.B. and C.A. Henke, 1991. Fibroproliferative disorders. Chest, 99: 81S-84S.

  3. Tredget, E.E., 1994. The molecular biology of fibroproliferative disorders of the skin: Potential cytokine therapeutics. Ann. Plastic Surg., 33: 152-154.

  4. Trojanowska, M., E.C. LeRoy, B. Eckes and T. Krieg, 1998. Pathogenesis of fibrosis: type 1 collagen and the skin. J. Mol. Med., 76: 266-274.

  5. Vuorio, E. and B. de Crombrugghe, 1990. The family of collagen genes. Annu. Rev. Biochem., 59: 837-872.

  6. Bogdanovic, Z., A. Bedalov, P.H. Krebsbach, D. Pavlin, C.O. Woody et al., 1994. Upstream regulatory elements necessary for expression of the rat COL1A1 promoter in transgenic mice. J. Bone Mineral Res., 9: 285-292.

  7. Brenner, D.A., R.A. Rippe and L. Veloz, 1989. Analysis of the collagen alpha 1(I) promoter. Nucleic Acids Res., 17: 6055-6064.
    Direct Link

  8. Houglum, K., M. Buck, J. Alcorn, S. Contreras, P. Bornstein and M. Chojkier, 1995. Two different cis-acting regulatory regions direct cell-specific transcription of the collagen alpha 1(I) gene in hepatic stellate cells and in skin and tendon fibroblasts. J. Clin. Invest., 96: 2269-2276.

  9. Nehls, M.C., R.A. Rippe, L. Veloz and D.A. Brenner, 1991. Transcription factors nuclear factor I and Sp1 interact with the murine collagen alpha 1 (I) promoter. Mol. Cellular Biol., 11: 4065-4073.
    Direct Link

  10. Monson, J.M., J. Friedman and B.J. McCarthy, 1982. DNA sequence analysis of a mouse pro alpha 1 (I) procollagen gene: evidence for a mouse B1 element within the gene. Mol. Cellular Biol., 2: 1362-1371.
    Direct Link

  11. Rippe, R.A., 1999. Role of transcriptional factors in stellate cell activation. Alcoholism Clin. Exp. Res., 23: 926-929.
    Google

  12. Rossert, J., H. Eberspaecher and B. de Crombrugghe, 1995. Separate cis-acting DNA elements of the mouse pro-alpha 1(I) collagen promoter direct expression of reporter genes to different type I collagen-producing cells in transgenic mice. J. Cellular Biol., 129: 1421-1432.

  13. Schmidt, A., P. Rossi and B. de Crombrugghe, 1986. Transcriptional control of the mouse alpha 2(I) collagen gene: functional deletion analysis of the promoter and evidence for cell-specific expression. Mol. Cellular Biol., 6: 347-354.

  14. Pavlin, D., A.C. Lichtler, A. Bedalov, B.E. Kream, J.R. Harrison et al., 1992. Differential utilization of regulatory domains within the alpha 1(I) collagen promoter in osseous and fibroblastic cells. J. Cellular Biol., 116: 227-236.

  15. Rippe, R.A., G. Almounajed and D.A. Brenner, 1995. Sp1 binding activity increases in activated Ito cells. Hepatology, 22: 241-251.

  16. Chen, A. and B.H. Davis, 2000. The DNA binding protein BTEB mediates acetaldehyde-induced, jun N-terminal kinase-dependent alphaI(I) collagen gene expression in rat hepatic stellate cells. Mol. Cellular Biol., 20: 2818-2826.
    Direct Link

  17. Li, L., C.M. Artlett, S.A. Jimenez, D.J. Hall and J. Varga, 1995. Positive regulation of human alpha 1 (I) collagen promoter activity by transcription factor Sp1. Gene, 164: 229-234.

  18. Slack, J.L., M.I. Parker and P. Bornstein, 1995. Transcriptional repression of the alpha 1(I) collagen gene by ras is mediated in part by an intronic AP1 site. J. Cellular Biochem., 58: 380-392.

  19. Hatamochi, A., B. Paterson and B. de Crombrugghe, 1986. Differential binding of a CCAAT DNA binding factor to the promoters of the mouse alpha 2(I) and alpha 1(III) collagen genes. J. Biol. Chem., 261: 11310-11314.
    Direct Link

  20. Bedalov, A., D.T. Breault, B.P. Sokolov, A.C. Lichtler and I. Bedalov et al., 1994. Regulation of the alpha 1(I) collagen promoter in vascular smooth muscle cells. Comparison with other alpha 1(I) collagen-producing cells in transgenic animals and cultured cells. J. Biol. Chem., 269: 4903-4909.
    Direct Link

  21. Rossert, J.A., S.S. Chen, H. Eberspaecher, C.N. Smith and B. de Crombrugghe, 1996. Identification of a minimal sequence of the mouse pro-alpha 1(I) collagen promoter that confers high-level osteoblast expression in transgenic mice and that binds a protein selectively present in osteoblasts. Proc. Natl. Acad. Sci.USA, 93: 1027-1031.
    Direct Link

  22. Krempen, K., D. Grotkopp, K. Hall, A. Bache, A. Gillan et al., 1999. Far upstream regulatory elements enhance position-independent and uterus-specific expression of the murine alpha1(I) collagen promoter in transgenic mice. Gene Expression, 8: 151-163.
    Direct Link

  23. Yata, Y., A. Scanga, A. Gillan, L. Yang, S. Reif et al., 2003. DNase I–hypersensitive sites enhance α1(I) collagen gene expression in hepatic stellate cells. Hepatology, 37: 267-276.
    CrossRefDirect Link

  24. Antoniv, T.T., S. de Val, D. Wells, C.P. Denton and C. Rabe, 2001. Characterization of an evolutionarily conserved far-upstream enhancer in the human alpha 2(I) collagen (COL1A2) gene. J. Biol. Chem., 276: 21754-21764.
    Direct Link

  25. Slack, J.L., D.J. Liska and P. Bornstein, 1991. An upstream regulatory region mediates high-level, tissue-specific expression of the human alpha 1(I) collagen gene in transgenic mice. Mol. Cell. Biol., 11: 2066-2074.
    CrossRefDirect Link

  26. Lindquist, J.N., W.F. Marzluff and B. Stefanovic, 2000. Fibrogenesis. III. Posttranscriptional regulation of type I collagen. Am. J. Physiol. Gastrointest. Liver Physiol., 279: G471-G476.
    Direct Link

  27. Eckes, B., C. Mauch, G. Huppe and T. Krieg, 1996. Differential regulation of transcription and transcript stability of pro-α 1(I) collagen and fibronectin in activated fibroblasts derived from patients with systemic scleroderma. Biochem. J., 315: 549-554.
    CrossRefDirect Link

  28. Eckes, B., C. Mauch, G. Huppe and T. Krieg, 1993. Downregulation of collagen synthesis in fibroblasts within three-dimensional collagen lattices involves transcriptional and posttranscriptional mechanisms. FEBS Lett., 318: 129-133.
    CrossRefDirect Link

  29. Focht, R.J. and S.L. Adams, 1984. Tissue specificity of type I collagen gene expression is determined at both transcriptional and post-transcriptional levels. Mol. Cellular Biol., 4: 1843-1852.
    Direct Link

  30. Mauch, C., A. Hatamochi, K. Scharffetter and T. Krieg, 1988. Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel. Exp. Cell Res., 178: 493-503.
    CrossRefPubMedDirect Link

  31. Mauch, C., E. Kozlowska, B. Eckes and T. Krieg, 1992. Altered regulation of collagen metabolism in scleroderma fibroblasts grown within three‐dimensional collagen gels. Exp. Dermatol., 1: 185-190.
    CrossRefDirect Link

  32. Sato, M., O. Ishikawa and Y. Miyachi, 1998. Distinct patterns of collagen gene expression are seen in normal and keloid fibroblasts grown in three-dimensional culture. Br. J. Dermatol., 138: 938-943.

  33. Stefanovic, B., C. Hellerbrand, M. Holcik, M. Briendl, S. Aliebhaber and D.A. Brenner, 1997. Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells. Mol. Cellular Biol., 17: 5201-5209.

  34. Stefanovic, B., C. Hellerbrand and D.A. Brenner, 1999. Regulatory role of the conserved stem-loop structure at the 5' end of collagen alpha1(I) mRNA. Mol. Cellular Biol., 19: 4334-4342.

  35. Stefanovic, B., J. Lindquist and D.A. Brenner, 2000. The 5' stem-loop regulates expression of collagen alpha1(I) mRNA in mouse fibroblasts cultured in a three-dimensional matrix. Nucleic Acids Res., 28: 641-647.

  36. Goldstein, R.H., 1991. Control of type I collagen formation in the lung. Am. J. Physiol., 261: L29-40.

  37. Ricupero, D.A., C.F. Poliks, D.C. Rishikof, K.A. Cuttle, P.P. Kuang and R.H. Goldstein, 2001. Phosphatidylinositol 3-kinase-dependent stabilization of alpha1(I) collagen mRNA in human lung fibroblasts. Am. J. Physiol. Cell Physiol., 281: C99-C105.

  38. Rishikof, D.C., D.A. Ricupero, H. Liu and R.H. Goldstein, 2004. Phenylbutyrate decreases type I collagen production in human lung fibroblasts. J. Cellular Biochem., 91: 740-748.

  39. Penttinen, R.P., S. Kobayashi and P. Bornstein, 1988. Transforming growth factor beta increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability. Proc. Natl. Acad. Sci. USA., 85: 1105-1108.

  40. Stefanovic, B., B. Schnabl and D.A. Brenner, 2002. Inhibition of collagen alpha 1(I) expression by the 5' stem-loop as a molecular decoy. J. Biol. Chem., 277: 18229-18237.

  41. Friedman, S.L., 1996. Hepatic stellate cells. Prog. Liver Dis., 14: 101-130.

  42. Maatta, A., E. Ekholm and R.P. Penttinen, 1995. Effect of the 3'-untranslated region on the expression levels and mRNA stability of alpha 1(I) collagen gene. Biochim. Biophys. Acta., 1260: 294-300.

  43. Beelman, C.A. and R. Parker, 1995. Degradation of mRNA in eukaryotes. Cell, 81: 179-183.
    PubMedDirect Link

  44. Ross, J., 1995. mRNA stability in mammalian cells. Microbiol. Rev., 59: 423-450.
    PubMedDirect Link

  45. Hamalainen, L., J. Oikarinen and K.I. Kivirikko, 1985. Synthesis and degradation of type I procollagen mRNAs in cultured human skin fibroblasts and the effect of cortisol. J. Biol. Chem., 260: 720-725.
    PubMedDirect Link

  46. Britton, R.S. and B.R. Bacon, 1999. Intracellular signaling pathways in stellate cell activation. Clin. Exp. Res., 23: 922-925.

  47. Friedman, S.L., 1999. Cytokines and fibrogenesis. Semin. Liver. Dis., 19: 129-140.
    CrossRefPubMedDirect Link

  48. Hellerbrand, C., B. Stefanovic, F. Giordano, E.R. Burchardt and D.A. Brenner, 1999. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J. Hepatol., 30: 77-87.

  49. Branton, M.H. and J.B. Kopp, 1999. TGF-beta and fibrosis. Microbes. Infect., 1: 1349-1365.

  50. Ihn, H., 2002. Pathogenesis of fibrosis: Role of TGF-beta and CTGF. Curr. Opin. Rheumatol., 14: 681-685.

  51. Reif, S., A. Lang, J.N. Lindquist, Y. Yata, E. Gabele et al., 2003. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J. Biol. Chem., 278: 8083-8090.

  52. Shegogue, D. and M. Trojanowska, 2004. Mammalian target of rapamycin positively regulates collagen type I production via a phosphatidylinositol 3-kinase-independent pathway. J. Biol. Chem., 279: 23166-23175.

  53. Reunanen, N., M. Foschi, J. Han and V.M. Kahari, 2000. Activation of extracellular signal-regulated kinase 1/2 inhibits type I collagen expression by human skin fibroblasts. J. Biol. Chem., 275: 34634-34639.

  54. Aycock, R.S. and J.M. Seyer, 1989. Collagens of normal and cirrhotic human liver. Connective Tissue Res., 23: 19-31.
    Direct Link

  55. Schuppan, D., 1990. Structure of the extracellular matrix in normal and fibrotic liver: Collagens and glycoproteins. Seminars Liver Dis., 10: 1-10.

  56. De Leeuw, A.M., S.P. McCarthy, A. Geerts and D.L. Knook, 1984. Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology, 4: 392-403.

  57. Maher, J.J. and R.F. McGuire, 1990. Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. J. Clin. Invest., 86: 1641-1648.

  58. Hendriks, H.F., W.A. Verhoofstad, A. Brouwer, A.M. de Leeuw and D.L. Knook, 1985. Perisinusoidal fat-storing cells are the main vitamin A storage sites in rat liver. Exp. Cell Res., 160: 138-149.
    Direct Link

  59. Friedman, S.L., 1999. Stellate cell activation in alcoholic fibrosis: An overview. Alcoholism: Clin. Exp. Res., 23: 904-910.
    Direct Link

  60. Knittel, T., D. Kobold, B. Saile, A. Grundmann, K. Neubauer, F. Piscaglia and G. Ramadori, 1999. Rat liver myofibroblasts and hepatic stellate cells: Different cell populations of the fibroblast lineage with fibrogenic potential see comments. Gastroenterology, 117: 1205-1221.

  61. Friedman, S.L., D.C. Rockey, R.F. McGuire, J.J. Maher, J.K. Boyles and G. Yamasaki, 1992. Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture. Hepatology, 15: 234-243.

  62. Friedman, S.L., F.J. Roll, J. Boyles, D.M. Arenson and D.M. Bissell, 1989. Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix. J. Biol. Chem., 264: 10756-10762.

  63. Brenner, D.A., L. Veloz, R. Jaenisch and J.M. Alcorn, 1993. Stimulation of the collagen alpha 1 (I) endogenous gene and transgene in carbon tetrachloride-induced hepatic fibrosis. Hepatology, 17: 287-292.

  64. Panduro, A., F. Shalaby, F.R. Weiner, L. Biempica, M.A. Zern and D.A. Shafritz, 1986. Transcriptional switch from albumin to alpha-fetoprotein and changes in transcription of other genes during carbon tetrachloride induced liver regeneration. Biochemistry, 25: 1414-1420.

  65. Panduro, A., F. Shalaby, L. Biempica and D.A. Shafritz, 1988. Changes in albumin, alpha-fetoprotein and collagen gene transcription in CCl4-induced hepatic fibrosis. Hepatology, 8: 259-266.

  66. Milani, S., H. Herbst, D. Schuppan, C. Surrenti, E.O. Riecken and H. Stein, 1990. Cellular localization of type I III and IV procollagen gene transcripts in normal and fibrotic human liver. Am. J. Pathol., 137: 59-70.

  67. Gallie, D.R., 1991. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev., 5: 2108-2116.

  68. Kahvejian, A., G. Roy and N. Sonenberg, 2001. The mRNA closed-loop model: The function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harb. Cold Spring Harbor Symp. Quant. Biol., 66: 293-300.
    Direct Link

  69. Kiledjian, M., X. Wang and S.A. Liebhaber, 1995. Identification of two KH domain proteins in the alpha-globin mRNP stability complex. EMBO J., 14: 4357-4364.
    Direct Link

  70. Lindquist, J.N., S.G. Kauschke, B. Stefanovic, E.R. Burchardt and D.A. Brenner, 2000. Characterization of the interaction between alphaCP(2) and the 3'-untranslated region of collagen alpha1(I) mRNA. Nucleic Acids Res., 28: 4306-4316.

  71. Wang, X., M. Kiledjian, I.M. Weiss and S.A. Liebhaber, 1995. Detection and characterization of a 3' untranslated region ribonucleoprotein complex associated with human alpha-globin mRNA stability. Mol. Cellular Biol., 15: 1769-1777.
    Direct Link

  72. Holcik, M. and S.A. Liebhaber, 1997. Four highly stable eukaryotic mRNAs assemble 3' untranslated region RNA- protein complexes sharing cis and trans components. Proc. Natl. Acad. Sci. USA., 94: 2410-2414.

  73. Lindquist, J.N., B. Stefanovic and D.A. Brenner, 2000. Regulation of collagen alpha1(I) expression in hepatic stellate cells. J. Gastroenterol., 35: 80-83.

  74. Leffers, H., K. Dejgaard and J.E. Celis, 1995. Characterisation of two major cellular poly(rC)-binding human proteins, each containing three K-homologous (KH) domains. Eur. J. Biochem., 230: 447-453.

  75. Wang, L.L., S. Richard and A.S. Shaw, 1995. P62 association with RNA is regulated by tyrosine phosphorylation. J. Biol. Chem., 270: 2010-2013.

  76. Van Seuningen, I., J. Ostrowski and K. Bomsztyk, 1995. Description of an IL-1-responsive kinase that phosphorylates the K protein. Enhancement of phosphorylation by selective DNA and RNA motifs. Biochemistry, 34: 5644-5650.

  77. Ogawa, W., Y. Hosomi, K. Shii and R.A. Roth, 1994. Evidence for two distinct 60-kilodalton substrates of the SRC tyrosine kinase. J. Biol. Chem., 269: 29602-29608.

  78. Yamada, Y., M. Mudryj and B. de Crombrugghe, 1983. A uniquely conserved regulatory signal is found around the translation initiation site in three different collagen genes. J. Biol. Chem., 258: 14914-14919.

  79. Su, M.W., H.R. Suzuki, J.J. Bieker, M. Solursh and F. Ramirez, 1991. Expression of two nonallelic type II procollagen genes during Xenopus laevis embryogenesis is characterized by stage-specific production of alternatively spliced transcripts. J. Cellular Biol., 115: 565-575.

  80. D'Alessio, M., F. Ramirez, H.R. Suzuki, M. Solursh and R. Gambino, 1990. Cloning of a fibrillar collagen gene expressed in the mesenchymal cells of the developing sea urchin embryo. J. Biol. Chem., 265: 7050-7054.

  81. Bornstein, P., J. McKay, S. Devarayalu and S.C. Cook, 1988. A highly conserved, 5' untranslated, inverted repeat sequence is ineffective in translational control of the alpha 1(I) collagen gene. Nucleic Acids Res., 16: 9721-9736.

  82. Hagedorn, C.H., T. Spivak-Kroizman, D.E. Friedland, D.J. Goss and Y. Xie, 1997. Expression of functional eIF-4Ehuman: purification, detailed characterization and its use in isolating eIF-4E binding proteins. Protein Expression Purificat., 9: 53-60.
    Direct Link

  83. Keene, J.D. and C.C. Query, 1991. Nuclear RNA-binding proteins. Prog. Nucleic Acid Res. Mol. Biol., 41: 179-202.

  84. Johnson, C., D. Primorac, M. McKinstry, J. McNeil, D. Rowe and J.B. Lawrence, 2000. Tracking COL1A1 RNA in osteogenesis imperfecta. splice-defective transcripts initiate transport from the gene but are retained within the SC35 domain. J. Cellular Biol., 150: 417-432.

  85. Dalgleish, R., 1998. The human collagen mutation database. Nucleic Acids Res., 26: 253-255.

  86. Willing, M.C., R.L. Slayton, S.H. Pitts and S.P. Deschenes, 1995. Absence of mutations in the promoter of the COL1A1 gene of type I collagen in patients with osteogenesis imperfecta type I. J. Med. Genet., 32: 697-700.

  87. Pain, V.M., 1996. Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem., 236: 747-771.

  88. Kozak, M., 1992. Regulation of translation in eukaryotic systems. Annu. Rev. Cell Biol., 8: 197-225.
    Direct Link

  89. Kaufman, R.J., 1994. Control of gene expression at the level of translation initiation. Curr. Opin. Biotechnol., 5: 550-557.

  90. Coller, J.M., N.K. Gray and M.P. Wickens, 1998. mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev., 12: 3226-3235.

  91. Poyry, T.A., A. Kaminski and R.J. Jackson, 2004. What determines whether mammalian ribosomes resume scanning after translation of a short upstream open reading frame? Genes Dev., 18: 62-75.

  92. Meijer, H.A. and A.A. Thomas, 2002. Control of eukaryotic protein synthesis by upstream open reading frames in the 5'-untranslated region of an mRNA. Biochem. J., 367: 1-11.

  93. Mize, G.J., H. Ruan, J.J. Low and D.R. Morris, 1998. The inhibitory upstream open reading frame from mammalian S-adenosylmethionine decarboxylase mRNA has a strict sequence specificity in critical positions. J. Biol. Chem., 273: 32500-32505.

  94. Raney, A., A.C. Baron, G.J. Mize, G.L. Law and D.R. Morris, 2000. In vitro translation of the upstream open reading frame in the mammalian mRNA encoding S-adenosylmethionine decarboxylase. J. Biol. Chem., 275: 24444-24450.

  95. Kozak, M., 1991. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem., 266: 19867-19870.

  96. Kozak, M., 1989. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol. Cellular Biol., 9: 5134-5142.
    Direct Link

  97. Kozak, M., 1987. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol., 196: 947-950.
    CrossRefPubMedDirect Link

  98. Kozak, M., 1984. Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo. Nature, 308: 241-246.

  99. Stefanovic, B. and D.A. Brenner, 2003. 5' stem-loop of collagen alpha 1(I) mRNA inhibits translation in vitro but is required for triple helical collagen synthesis in vivo. J. Biol. Chem., 278: 927-933.

  100. Brownell, A.G. and A. Veis, 1976. Intracellular location of triple helix formation of collagen. Enzyme probe studies. J. Biol. Chem., 251: 7137-7143.

  101. Silvera, D., A.V. Gamarnik and R. Andino, 1999. The N-terminal K homology domain of the poly(rC)-binding protein is a major determinant for binding to the poliovirus 5'-untranslated region and acts as an inhibitor of viral translation. J. Biol. Chem., 274: 38163-38170.

  102. Walter, B.L., T.B. Parsley, E. Ehrenfeld and B.L. Semler, 2002. Distinct poly (rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication. J. Virol., 76: 12008-12022.
    CrossRef

  103. Bedard, K.M., B.L. Walter and B.L. Semler, 2004. Multimerization of poly(rC) binding protein 2 is required for translation initiation mediated by a viral IRES. RNA, 10: 1266-1276.
    Direct Link

  104. Wang, Z., N. Day, P. Trifillis and M. Kiledjian, 1999. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol. Cellular Biol., 19: 4552-4560.
    Direct Link

  105. Beck, K., B.A. Boswell, C.C. Ridgway and H.P. Bachinger, 1996. Triple helix formation of procollagen type I can occur at the rough endoplasmic reticulum membrane. J. Biol. Chem., 271: 21566-21573.

  106. Gura, T., G. Hu and A. Veis, 1996. Posttranscriptional aspects of the biosynthesis of type 1 collagen pro- alpha chains: The effects of posttranslational modifications on synthesis pauses during elongation of the pro alpha 1 (I) chain. J. Cellular Biochem., 61: 194-215.
    Direct Link

  107. Veis, A. and T.Z. Kirk, 1989. The coordinate synthesis and cotranslational assembly of type I procollagen. J. Biol. Chem., 264: 3884-3889.

  108. Stefanovic, B., L. Stefanovic, B. Schnabl, R. Bataller and D.A. Brenner, 2004. TRAM2 protein interacts with endoplasmic reticulum Ca2+ pump Serca2b and is necessary for collagen type I synthesis. Mol. Cellular Biol., 24: 1758-1768.

  109. Bulleid, N.J., J.A. Dalley and J.F. Lees, 1997. The C-propeptide domain of procollagen can be replaced with a transmembrane domain without affecting trimer formation or collagen triple helix folding during biosynthesis. EMBO J., 16: 6694-6701.

  110. Lamande, S.R. and J.F. Bateman, 1999. Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular chaperones. Seminars Cell Dev. Biol., 10: 455-464.
    Direct Link

  111. Gotkin, M.G., C.R. Ripley, S.R. Lamande, J.F. Bateman and R.S. Bienkowski, 2004. Intracellular trafficking and degradation of unassociated proalpha2 chains of collagen type I. Exp. Cell Res., 296: 307-316.

  112. Tajima, S., M. Takehana and N. Azuma, 1994. Production of overmodified type I procollagen in a case of osteogenesis imperfecta. J. Dermatol., 21: 219-222.

  113. Nagata, K., 1996. Hsp47: A collagen-specific molecular chaperone. Trends Biochem. Sci., 21: 22-26.

  114. Sauk, J.J., T. Smith, K. Norris and L. Ferreira, 1994. Hsp47 and the translation-translocation machinery cooperate in the production of alpha 1(I) chains of type I procollagen. J. Biol. Chem., 269: 3941-3946.

  115. Suokas, M., R. Myllyla and S. Kellokumpu, 2000. A single cooh-terminal peptide segment mediates both membrane-association and localization of lysyl hydroxylase in the endoplasmic reticulum. J. Biol. Chem., 23: 17863-17868.

  116. Muller, E.A. and D.J. Danner, 2004. Tissue-specific translation of murine branched-chain a-ketoacid dehydrogenase kinase mRNA is dependent upon an upstream open reading frame in the 5' UTR. J. Biol. Chem., 279: 44645-44655.
    Direct Link

Search


Leave a Comment


Your email address will not be published. Required fields are marked *

Useful Links

  • Journals
  • For Authors
  • For Referees
  • For Librarian
  • For Socities

Contact Us

Office Number 1128,
Tamani Arts Building,
Business Bay,
Deira, Dubai, UAE

Phone: +971 507 888 742
Email: [email protected]

About Science Alert

Science Alert is a technology platform and service provider for scholarly publishers, helping them to publish and distribute their content online. We provide a range of services, including hosting, design, and digital marketing, as well as analytics and other tools to help publishers understand their audience and optimize their content. Science Alert works with a wide variety of publishers, including academic societies, universities, and commercial publishers.

Follow Us
© Copyright Science Alert. All Rights Reserved