ABSTRACT
Small heat shock proteins (sHsps) have chaperone-like activity and can be found in almost all organisms. The most prominent sHsp is the vertebrate eye-lens protein α-crystallin. Typically, sHsps assemble into large, dynamic oligomers, which constantly exchange subunits. In vitro, they prevent the formation of insoluble aggregates of thermally or chemically denatured proteins. Since sHsps have no refolding activity, substrate proteins must be passed on to other chaperones in order to regain enzymatic activity. The dynamic nature of the sHsp complexes is critical for the interaction with substrate proteins. In this review, we reported on functional and structural properties of sHsps and the role these proteins play in the cellular chaperone network.
PDF References Citation
How to cite this article
Nicolas Lentze and Franz Narberhaus, 2005. Small Heat Shock Proteins OR: A Subgroup of Molecular Chaperones. Journal of Biological Sciences, 5: 1-9.
DOI: 10.3923/jbs.2005.1.9
URL: https://scialert.net/abstract/?doi=jbs.2005.1.9
DOI: 10.3923/jbs.2005.1.9
URL: https://scialert.net/abstract/?doi=jbs.2005.1.9
REFERENCES
- Haslbeck, M. and J. Buchner, 2002. Chaperone function of sHsps. Prog. Mol. Subcellular Biol., 28: 37-59.
Direct Link - MacRae, T.H., 2000. Structure and function of small heat shock/α-crystallin proteins: Established concepts and emerging ideas. Cellular Mol. Life Sci., 57: 899-913.
Direct Link - Sun, W., M. Van Montagu and N. Verbruggen, 2002. Small heat shock proteins and stress tolerance in plants. Biochem. Biophys. Acta, 1577: 1-9.
CrossRef - Lee, G.J., A.M. Roseman, H.R. Saibil and E. Vierling, 1997. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding competent state. EMBO J., 16: 659-671.
Direct Link - Perng, M.D., P.J. Muchowski, I.P. van Den, G.J. Wu, A.M. Hutcheson, J.I. Clark and R.A. Quinlan, 1999. The cardiomyopathy and lens cataract mutation in αB-crystallin alters its protein structure, chaperone activity and interaction with intermediate filaments in vitro. J. Biol. Chem., 274: 33235-33243.
- Van Montfort, R.L., E. Basha, K.L. Friedrich, C. Slingsby and E. Vierling, 2001. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol., 8: 1025-1030.
CrossRefDirect Link - Ehrnsperger, M., H. Lilie, M. Gaestel and J. Buchner, 1999. The dynamics of Hsp25 quaternary structure. J. Biol. Chem., 274: 14867-14874.
CrossRefDirect Link - Haslbeck, M., S. Walke, T. Stromer, M. Ehrnsperger, H.E. White et al., 1999. Hsp26: A temperature-regulated chaperone. EMBO J., 18: 6744-6751.
PubMedDirect Link - Chang, Z., T.P. Primm, J. Jakana, I.H. Lee, I. Serysheva et al., 1996. Mycobacterium tuberculosis 16 kDa antigen (Hsp16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem., 271: 7218-7223.
PubMedDirect Link - Haley, D.A., J. Horwitz and P.L. Stewart, 1998. The small heat-shock protein, αB-crystallin, has a variable quaternary structure. J. Mol. Biol., 277: 27-35.
CrossRef - Aquilina, J.A., J.L. Benesch, O.A. Bateman, C. Slingsby and C.V. Robinson, 2003. Polydispersity of a mammalian chaperone: Mass spectrometry reveals the population of oligomers in αB-crystallin. Proc. Natl. Acad. Sci. USA., 100: 10611-10616.
CrossRefDirect Link - Merck, K.B., P.J. Groenen, C.E. Voorter, W.A. de Haard-Hoekman, J. Horwitz, H. Bloemendal and W.W. de Jong, 1993. Structural and functional similarities of bovine α-crystallin and mouse small heat-shock protein. A family of chaperones. J. Biol. Chem., 268: 1046-1052.
PubMedDirect Link - Chowdary, T.K., R. Bakthisaran, R. Tangirala and M.C. Rao, 2004. Mammalian Hsp22 is a heat-inducible small heat shock protein with chaperone-like activity. Biochem. J., 381: 379-387.
PubMedDirect Link - Lee, G.J., N. Pokala and E. Vierling, 1995. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem., 270: 10432-10438.
CrossRefDirect Link - Rogalla, T., M. Ehrnsperger, X. Preville, A. Kotlyarov, G. Lutsch et al., 1999. Regulation of Hsp27 oligomerization, chaperone function and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J. Biol. Chem., 274: 18947-18956.
CrossRefDirect Link - Kim, K.K., R. Kim and S.H. Kim, 1998. Crystal structure of a small heat-shock protein. Nature, 394: 595-599.
CrossRefDirect Link - Stromer, T., E. Fischer, K. Richter, M. Haslbeck and J. Buchner, 2004. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation. J. Biol. Chem., 13: 11222-11228.
PubMedDirect Link - Sobott, F., J.L. Benesch, E. Vierling and C.V. Robinson, 2002. Subunit exchange of multimeric protein complexes. J. Biol. Chem., 277: 38921-38929.
CrossRefDirect Link - Muchowski, P.J. and J.I. Clark, 1998. ATP-enhanced molecular chaperone functions of the small heat shock protein human αB-crystallin. Proc. Natl. Acad. Sci. USA., 95: 1004-1009.
Direct Link - Wang, K. and A. Spector, 2001. ATP causes small heat shock proteins to release denatured protein. Eur. J. Biochem., 268: 6335-6345.
PubMedDirect Link - Stromer, T., M. Ehrnsperger, M. Gaestel and J. Buchner, 2003. Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem., 278: 18015-18021.
CrossRefDirect Link - Friedrich, K.L., K.C. Giese, N.R. Buan and E. Vierling, 2004. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J. Biol. Chem., 279: 1080-1089.
CrossRefDirect Link - Gu, L., A. Abulimiti, W. Li and Z. Chang, 2002. Monodisperse Hsp16.3 nonamer exhibits dynamic dissociation and reassociation, with the nonamer dissociation prerequisite for chaperone-like activity. J. Mol. Biol., 319: 517-526.
PubMedDirect Link - Haslbeck, M., N. Braun, T. Stromer, B. Richter, N. Model, S. Weinkauf and J. Buchner, 2004. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J., 23: 638-649.
CrossRefDirect Link - Bova, M.P., H.S. McHaourab, Y. Han and B.K. Fung, 2000. Subunit exchange of small heat shock proteins: Analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J. Biol. Chem., 275: 1035-1042.
CrossRefDirect Link - Bova, M.P., L.L. Ding, J. Horwitz and B.K. Fung, 1997. Subunit exchange of αA-crystallin. J. Biol. Chem., 272: 29511-29517.
CrossRefDirect Link - Reddy, G.B., K.P. Das, J.M. Petrash and W.K. Surewicz, 2000. Temperature-dependent chaperone activity and structural properties of human αA-and αB-crystallins. J. Biol. Chem., 275: 4565-4570.
Direct Link - Bova, M.P., Q. Huang, L. Ding and J. Horwitz, 2002. Subunit exchange, conformational stability and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii. J. Biol. Chem., 277: 38468-38475.
PubMedDirect Link - Lambert, H., S.J. Charette, A.F. Bernier, A. Guimond and J. Landry, 1999. HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J. Biol. Chem., 274: 9378-9385.
PubMedDirect Link