• [email protected]
  • +971 507 888 742
Submit Manuscript
SciAlert
  • Home
  • Journals
  • Information
    • For Authors
    • For Referees
    • For Librarian
    • For Societies
  • Contact
  1. Journal of Biological Sciences
  2. Vol 5 (1), 2005
  3. 1-9
  • Online First
  • Current Issue
  • Previous Issues
  • More Information
    Aims and Scope Editorial Board Guide to Authors Article Processing Charges
    Submit a Manuscript

Journal of Biological Sciences

Year: 2005 | Volume: 5 | Issue: 1 | Page No.: 1-9
DOI: 10.3923/jbs.2005.1.9
crossmark

Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
Research Article

Small Heat Shock Proteins OR: A Subgroup of Molecular Chaperones

Nicolas Lentze and Franz Narberhaus

ABSTRACT


Small heat shock proteins (sHsps) have chaperone-like activity and can be found in almost all organisms. The most prominent sHsp is the vertebrate eye-lens protein α-crystallin. Typically, sHsps assemble into large, dynamic oligomers, which constantly exchange subunits. In vitro, they prevent the formation of insoluble aggregates of thermally or chemically denatured proteins. Since sHsps have no refolding activity, substrate proteins must be passed on to other chaperones in order to regain enzymatic activity. The dynamic nature of the sHsp complexes is critical for the interaction with substrate proteins. In this review, we reported on functional and structural properties of sHsps and the role these proteins play in the cellular chaperone network.
PDF References Citation

How to cite this article

Nicolas Lentze and Franz Narberhaus, 2005. Small Heat Shock Proteins OR: A Subgroup of Molecular Chaperones. Journal of Biological Sciences, 5: 1-9.

DOI: 10.3923/jbs.2005.1.9

URL: https://scialert.net/abstract/?doi=jbs.2005.1.9

Search


REFERENCES


  1. Anfinsen, C.B., 1973. Principles that govern the folding of protein chains. Science, 181: 223-230.

  2. Dobson, C.M. and M. Karplus, 1999. The fundamentals of protein folding: Bringing together theory and experiment. Curr. Opin. Struct. Biol., 9: 92-101.

  3. Craig, E.A., H.C. Eisenman and H.A. Hundley, 2003. Ribosome-tethered molecular chaperones: The first line of defense against protein misfolding? Curr. Opin. Microbiol., 6: 157-162.

  4. Ellis, R.J., 2001. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol., 11: 114-119.

  5. Ellis, J., 1987. Proteins as molecular chaperones. Nat., 328: 378-379.

  6. Randall, L.L. and S.J. Hardy, 2002. SecB, one small chaperone in the complex milieu of the cell. Cellular Mol. Life Sci., 59: 1617-1623.

  7. Thony-Meyer, L., 2003. A heme chaperone for cytochrome c biosynthesis. Biochemistry, 42: 13099-13105.

  8. Hartl, F.U. and M. Hayer-Hartl, 2002. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295: 1852-1858.

  9. Deuerling, E., A. Schulze-Specking, T. Tomoyasu, A. Mogk and B. Bukau, 1999. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature, 400: 693-696.

  10. Teter, S.A., W.A. Houry, D. Ang, T. Tradler, D. Rockabrand et al., 1999. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell, 97: 755-765.

  11. Mogk, A., T. Tomoyasu, P. Goloubinoff, S. Rudiger, D. Roder, H. Langen and B. Bukau, 1999. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J., 18: 6934-6949.

  12. Ramos, J.L., M.T. Gallegos, S. Marques, M.I. Ramos-Gonzalez, M. Espinosa-Urgel and A. Segura, 2001. Responses of gram-negative bacteria to certain environmental stressors. Curr. Opin. Microbiol., 4: 166-171.

  13. Munchbach, M., A. Nocker and F. Narberhaus, 1999. Multiple small heat shock proteins in rhizobia. J. Bacteriol., 181: 83-90.

  14. Wickner, S., M.R. Maurizi and S. Gottesman, 1999. Posttranslational quality control: Folding, refolding and degrading proteins. Science, 286: 1888-1893.

  15. Veinger, L., S. Diamant, J. Buchner and P. Goloubinoff, 1998. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem., 273: 11032-11037.

  16. Mogk, A., C. Schlieker, K.L. Friedrich, H.J. Schonfeld, E. Vierling and B. Bukau, 2003. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J. Biol. Chem., 278: 31033-31042.

  17. Mogk, A., E. Deuerling, S. Vorderwulbecke, E. Vierling and B. Bukau, 2003. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol., 50: 585-595.

  18. Haslbeck, M. and J. Buchner, 2002. Chaperone function of sHsps. Prog. Mol. Subcellular Biol., 28: 37-59.
    Direct Link

  19. Van Montfort, R., C. Slingsby and E. Vierling, 2001. Structure and function of the small heat shock protein/α-crystallin family of molecular chaperones. Adv. Protein Chem., 59: 105-156.

  20. MacRae, T.H., 2000. Structure and function of small heat shock/α-crystallin proteins: Established concepts and emerging ideas. Cellular Mol. Life Sci., 57: 899-913.
    Direct Link

  21. Kappe, G., E. Franck, P. Verschuure, W.C. Boelens, J.A. Leunissen and W.W. de Jong, 2003. The human genome encodes 10 α-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones, 8: 53-61.

  22. Horwitz, J., 2003. Alpha-crystallin. Exp. Eye Res., 76: 145-153.

  23. Scharf, K.D., M. Siddique and E. Vierling, 2001. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperones, 6: 225-237.

  24. Sun, W., M. Van Montagu and N. Verbruggen, 2002. Small heat shock proteins and stress tolerance in plants. Biochem. Biophys. Acta, 1577: 1-9.
    CrossRef

  25. Narberhaus, F., 2002. α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev., 66: 64-93.

  26. Kappe, G., J.A. Leunissen and W.W. de Jong, 2002. Evolution and diversity of prokaryotic small heat shock proteins. Prog. Mol. Subcellular Biol., 28: 1-17.

  27. Horwitz, J., 1992. α-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA., 89: 10449-10453.

  28. Shearstone, J.R. and F. Baneyx, 1999. Biochemical characterization of the small heat shock protein IbpB from Escherichia coli. J. Biol. Chem., 274: 9937-9945.

  29. Studer, S. and F. Narberhaus, 2000. Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J. Biol. Chem., 275: 37212-37218.

  30. Ehrnsperger, M., S. Graber, M. Gaestel and J. Buchner, 1997. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J., 16: 221-229.

  31. Lee, G.J., A.M. Roseman, H.R. Saibil and E. Vierling, 1997. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding competent state. EMBO J., 16: 659-671.
    Direct Link

  32. Yeh, C.H., P.F. Chang, K.W. Yeh, W.C. Lin, Y.M. Chen and C.Y. Lin, 1997. Expression of a gene encoding a 16.9 kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc. Natl. Acad. Sci. USA., 94: 10967-10972.

  33. Rollet, E., J.N. Lavoie, J. Landry and R.M. Tanguay, 1992. Expression of Drosophila's 27 kDa heat shock protein into rodent cells confers thermal resistance. Biochem. Biophys. Res. Commun., 185: 116-120.

  34. Kitagawa, M., Y. Matsumura, T. Tsuchido, Y. Abu Kwaik and N.C. Engleberg, 2000. Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stresses in Escherichia coli. FEMS Microbiol. Lett., 184: 165-171.

  35. Kuczynska-Wisnik, D., S. Kcdzierska, E. Matuszewska, P. Lund, A. Taylor B. Lipinska and E. Laskowska, 2002. The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology, 148: 1757-1765.

  36. Plesofsky-Vig, N. and R. Brambl, 1995. Disruption of the gene for hsp30, an α-crystallin-related heat shock protein of Neurospora crassa, causes defects in thermotolerance. Proc. Natl. Acad. Sci. USA., 92: 5032-5036.

  37. Lee, S., H.A. Owen, D.J. Prochaska and S.R. Barnum, 2000. HSP16.6 is involved in the development of thermotolerance and thylakoid stability in the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Curr. Microbiol., 40: 283-287.

  38. Giese, K.C. and E. Vierling, 2002. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J. Biol. Chem., 277: 46310-46318.

  39. Torok, Z., P. Goloubinoff, I. Horvath, N.M. Tsvetkova, A. Glatz et al., 2001. Synechocystis Hsp17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc. Natl. Acad. Sci. USA., 98: 3098-3103.

  40. Cunningham, A.F. and C.L. Spreadbury, 1998. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton α-crystallin homolog. J. Bacteriol., 180: 801-808.

  41. Lee, B.Y., S.A. Hefta and P.J. Brennan, 1992. Characterization of the major membrane protein of virulent Mycobacterium tuberculosis. Infect. Immun., 60: 2066-2074.

  42. Litt, M., P. Kramer, D.M. LaMorticella, W. Murphey, E.W. Lovrien and R.G. Weleber, 1998. Autosomal dominant congenital cataract associated with a missense mutation in the human α-crystallin gene CRYAA. Hum. Mol. Genet., 7: 471-474.

  43. Vicart, P., A. Caron, P. Guicheney, Z. Li, M.C. Prevost, A. Faure et al., 1998. A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nat. Genet., 20: 92-95.

  44. Bova, M.P., O. Yaron, Q. Huang, L. Ding, D.A. Haley, P.L. Stewart and J. Horwitz, 1999. Mutation R120G in αB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proc. Natl. Acad. Sci. USA., 96: 6137-6142.

  45. Kumar, L.V., T. Ramakrishna and C.M. Rao, 1999. Structural and functional consequences of the mutation of a conserved arginine residue in αA- and αB- crystallins. J. Biol. Chem., 274: 24137-24141.

  46. Perng, M.D., P.J. Muchowski, I.P. van Den, G.J. Wu, A.M. Hutcheson, J.I. Clark and R.A. Quinlan, 1999. The cardiomyopathy and lens cataract mutation in αB-crystallin alters its protein structure, chaperone activity and interaction with intermediate filaments in vitro. J. Biol. Chem., 274: 33235-33243.

  47. Cobb, B.A. and J.M. Petrash, 2000. Structural and functional changes in the αA-crystallin R116C mutant in hereditary cataracts. Biochemistry, 39: 15791-15798.

  48. Shroff, N.P., M. Cherian-Shaw, S. Bera and E.C. Abraham, 2000. Mutation of R116C results in highly oligomerized αA-crystallin with modified structure and defective chaperone-like function. Biochemistry, 39: 1420-1426.

  49. De Jong, W.W., G.J. Caspers and J.A. Leunissen, 1998. Genealogy of the α-crystallin small heat-shock protein superfamily. Int. J. Biol. Macromol., 22: 151-162.

  50. Caspers, G.J., J.A. Leunissen and W.W. de Jong, 1995. The expanding small heat-shock protein family and structure predictions of the conserved J. Mol. Evol., 40: 238-248.

  51. Studer, S., M. Obrist, N. Lentze and F. Narberhaus, 2002. A critical motif for oligomerization and chaperone activity of bacterial α-heat shock proteins. Eur. J. Biochem., 269: 3578-3586.

  52. Kim, R., K.K Kim, H. Yokota and S.H. Kim, 1998. Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. USA., 95: 9129-9133.

  53. Van Montfort, R.L., E. Basha, K.L. Friedrich, C. Slingsby and E. Vierling, 2001. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol., 8: 1025-1030.
    CrossRefDirect Link

  54. Ehrnsperger, M., H. Lilie, M. Gaestel and J. Buchner, 1999. The dynamics of Hsp25 quaternary structure. J. Biol. Chem., 274: 14867-14874.
    CrossRefDirect Link

  55. Haslbeck, M., S. Walke, T. Stromer, M. Ehrnsperger, H.E. White et al., 1999. Hsp26: A temperature-regulated chaperone. EMBO J., 18: 6744-6751.
    PubMedDirect Link

  56. Chang, Z., T.P. Primm, J. Jakana, I.H. Lee, I. Serysheva et al., 1996. Mycobacterium tuberculosis 16 kDa antigen (Hsp16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem., 271: 7218-7223.
    PubMedDirect Link

  57. Haley, D.A., J. Horwitz and P.L. Stewart, 1998. The small heat-shock protein, αB-crystallin, has a variable quaternary structure. J. Mol. Biol., 277: 27-35.
    CrossRef

  58. Aquilina, J.A., J.L. Benesch, O.A. Bateman, C. Slingsby and C.V. Robinson, 2003. Polydispersity of a mammalian chaperone: Mass spectrometry reveals the population of oligomers in αB-crystallin. Proc. Natl. Acad. Sci. USA., 100: 10611-10616.
    CrossRefDirect Link

  59. Merck, K.B., P.J. Groenen, C.E. Voorter, W.A. de Haard-Hoekman, J. Horwitz, H. Bloemendal and W.W. de Jong, 1993. Structural and functional similarities of bovine α-crystallin and mouse small heat-shock protein. A family of chaperones. J. Biol. Chem., 268: 1046-1052.
    PubMedDirect Link

  60. Chowdary, T.K., R. Bakthisaran, R. Tangirala and M.C. Rao, 2004. Mammalian Hsp22 is a heat-inducible small heat shock protein with chaperone-like activity. Biochem. J., 381: 379-387.
    PubMedDirect Link

  61. Lee, G.J., N. Pokala and E. Vierling, 1995. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem., 270: 10432-10438.
    CrossRefDirect Link

  62. Rogalla, T., M. Ehrnsperger, X. Preville, A. Kotlyarov, G. Lutsch et al., 1999. Regulation of Hsp27 oligomerization, chaperone function and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J. Biol. Chem., 274: 18947-18956.
    CrossRefDirect Link

  63. Kim, K.K., R. Kim and S.H. Kim, 1998. Crystal structure of a small heat-shock protein. Nature, 394: 595-599.
    CrossRefDirect Link

  64. Stromer, T., E. Fischer, K. Richter, M. Haslbeck and J. Buchner, 2004. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation. J. Biol. Chem., 13: 11222-11228.
    PubMedDirect Link

  65. Sobott, F., J.L. Benesch, E. Vierling and C.V. Robinson, 2002. Subunit exchange of multimeric protein complexes. J. Biol. Chem., 277: 38921-38929.
    CrossRefDirect Link

  66. Muchowski, P.J. and J.I. Clark, 1998. ATP-enhanced molecular chaperone functions of the small heat shock protein human αB-crystallin. Proc. Natl. Acad. Sci. USA., 95: 1004-1009.
    Direct Link

  67. Wang, K. and A. Spector, 2001. ATP causes small heat shock proteins to release denatured protein. Eur. J. Biochem., 268: 6335-6345.
    PubMedDirect Link

  68. Stromer, T., M. Ehrnsperger, M. Gaestel and J. Buchner, 2003. Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem., 278: 18015-18021.
    CrossRefDirect Link

  69. Friedrich, K.L., K.C. Giese, N.R. Buan and E. Vierling, 2004. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J. Biol. Chem., 279: 1080-1089.
    CrossRefDirect Link

  70. Gu, L., A. Abulimiti, W. Li and Z. Chang, 2002. Monodisperse Hsp16.3 nonamer exhibits dynamic dissociation and reassociation, with the nonamer dissociation prerequisite for chaperone-like activity. J. Mol. Biol., 319: 517-526.
    PubMedDirect Link

  71. Haslbeck, M., N. Braun, T. Stromer, B. Richter, N. Model, S. Weinkauf and J. Buchner, 2004. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J., 23: 638-649.
    CrossRefDirect Link

  72. Bova, M.P., H.S. McHaourab, Y. Han and B.K. Fung, 2000. Subunit exchange of small heat shock proteins: Analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J. Biol. Chem., 275: 1035-1042.
    CrossRefDirect Link

  73. Bova, M.P., L.L. Ding, J. Horwitz and B.K. Fung, 1997. Subunit exchange of αA-crystallin. J. Biol. Chem., 272: 29511-29517.
    CrossRefDirect Link

  74. Reddy, G.B., K.P. Das, J.M. Petrash and W.K. Surewicz, 2000. Temperature-dependent chaperone activity and structural properties of human αA-and αB-crystallins. J. Biol. Chem., 275: 4565-4570.
    Direct Link

  75. Bova, M.P., Q. Huang, L. Ding and J. Horwitz, 2002. Subunit exchange, conformational stability and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii. J. Biol. Chem., 277: 38468-38475.
    PubMedDirect Link

  76. Lambert, H., S.J. Charette, A.F. Bernier, A. Guimond and J. Landry, 1999. HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J. Biol. Chem., 274: 9378-9385.
    PubMedDirect Link

  77. Studer, S., 2002. Chaperone Activity and Oligomerization of Bacterial Small Heat Shock Proteins. Swiss Federal Institute of Technology, Z�rich, Switzweland.

Search


Related Articles

Leave a Comment


Your email address will not be published. Required fields are marked *

Useful Links

  • Journals
  • For Authors
  • For Referees
  • For Librarian
  • For Socities

Contact Us

Office Number 1128,
Tamani Arts Building,
Business Bay,
Deira, Dubai, UAE

Phone: +971 507 888 742
Email: [email protected]

About Science Alert

Science Alert is a technology platform and service provider for scholarly publishers, helping them to publish and distribute their content online. We provide a range of services, including hosting, design, and digital marketing, as well as analytics and other tools to help publishers understand their audience and optimize their content. Science Alert works with a wide variety of publishers, including academic societies, universities, and commercial publishers.

Follow Us
© Copyright Science Alert. All Rights Reserved