Subscribe Now Subscribe Today
Fulltext PDF
Research Article

Transcription and mRNA Processing Events: the Importance of Coordination

A. Parent , I. Benzaghou , I. Bougie and M. Bisaillon

Eukaryotic mRNAs are extensively modified prior to being translated into proteins. Processing events such as RNA capping, splicing and polyadenylation are required to produce fully translatable mRNAs. Growing evidences suggest that the carboxy-terminal domain of the RNA polymerase II act as a common link between these events. The importance of coordination between transcription and RNA processing is also discussed in this mini review.

Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

A. Parent , I. Benzaghou , I. Bougie and M. Bisaillon , 2004. Transcription and mRNA Processing Events: the Importance of Coordination. Journal of Biological Sciences, 4: 624-627.

DOI: 10.3923/jbs.2004.624.627


Beelman, C.A. and R. Parker, 1995. Degradation of mRNA in eukaryotes. Cell, 81: 179-183.
PubMed  |  Direct Link  |  

Cho, H., T.K. Kim, H. Mancebo, W.S. Lane, O. Flores and D. Reinberg D, 1999. A protein phosphatase functions to recycle RNA polymerase II. Genes Dev., 13: 1540-1552.

Cramer, P., A. Srebrow, S. Kadener, S. Werbajh and M. de la Mata et al., 2001. Coordination between transcription and pre-mRNA processing. FEBS Lett., 498: 179-182.

Dahmus, M.E., 1996. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem., 271: 19009-19012.

Dantonel, J.C., K.G. Murthy, J.L Manley and L. Tora, 1997. Transcription factor TFIID recruits factor CPSF for formation of 3' end of mRNA. Nature, 389: 399-402.

Furuichi, Y. and A.J. Shatkin, 2000. Viral and cellular mRNA capping: Past and prospects. Adv. Virol. Res., 55: 135-184.

Gieselmann, V., A. Polten, J. Kreysing and K. von Figura, 1989. Arylsulfatase a pseudodeficiency: Loss of a polyadenylylation signal and N-glycosylation site. Proc. Nat. Acad. Sci., USA., 86: 9436-9440.

Higgs, D.R, S.E. Goodbourn, J. Lamb, J.B. Clegg, D.J. Weatherall and N.J. Proudfoot, 1983. Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature, 306: 398-400.

Hirose, Y. and J.L Manley, 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature, 395: 93-96.

Hirose, Y., R. Tacke and J.L. Manley, 1999. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev., 13: 1234-1239.

Ho, C.K. and S. Shuman, 1999. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell, 3: 405-411.

Ho, C.K., Y. Pei and S. Shuman, 1998. Yeast and viral RNA 5' triphosphatases comprise a new nucleoside triphosphatase family. J. Biol. Chem., 273: 34151-34156.

Kramer, A., 1996. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem., 65: 367-409.

Lewis, J.D. and E. Izaurralde, 1997. The role of the cap structure in RNA processing and nuclear export. Eur. J. Biochem., 247: 461-469.

Mao, X., B. Schwer and S. Shuman, 1996. Mutational analysis of the Saccharomyces cerevisiae ABD1 gene: cap methyltransferase activity is essential for cell growth. Mol. Cell. Biol., 16: 475-480.

Marshall, N.F. and M.E. Dahmus, 2000. C-terminal domain phosphatase sensitivity of RNA polymerase II in early elongation complexes on the HIV-1 and adenovirus 2 major late templates. J. Biol. Chem., 275: 32430-32437.

McCracken, S., N. Fong, E. Rosonina, K. Yankulov and G. Brothers et al., 1997. 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev., 11: 3306-3318.

McCracken, S., N. Fong, K. Yankulov, S. Ballantyne and G. Pan et al., 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature, 385: 357-361.

Mortillaro, M.J., B.J. Blencowe, X. Wei, H. Nakayasu and et al., 1996. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Nat. Acad. Sci., USA., 93: 825-825.

Niwa, M., C.C. MacDonald and S.M. Berget, 1992. Are vertebrate exons scanned during splice-site selection? Nature, 360: 277-280.

Orkin, S.H., T.C. Cheng, S.E. Antonarakis and H.H. Kazazian, 1985. Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human beta-globin gene. EMBO J., 4: 453-456.

Proudfoot, N.J., A. Furger and M.J. Dye, 2002. Integrating mRNA processing with transcription. Cell, 108: 501-512.
CrossRef  |  PubMed  |  Direct Link  |  

Reines, D., J.W. Conaway and R.C. Conaway, 1996. The RNA polymerase II general elongation factors. Trends Biochem. Sci., 21: 351-355.

Sachs, A.B., P. Sarnow and H.W. Hentze, 1997. Starting at the beginning, middle and end: Translation initiation in eukaryotes. Cell, 89: 831-838.
PubMed  |  Direct Link  |  

Schroeder, S.C., B. Schwer, S. Shuman and D. Bentley, 2000. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev., 14: 2435-2440.

Schwer, B. and S. Shuman, 1994. Mutational analysis of yeast mRNA capping enzyme. Proc. Nat. Acad. Sci., USA, 91: 4328-4332.

Shatkin, A.J. and J.L. Manley, 2000. The ends of the affair: Capping and polyadenylation. Nat. Struct. Biol., 7: 838-842.

Shibagaki, Y., N. Itoh, H. Yamada, S. Nagata and K. Mizumoto, 1992. mRNA capping enzyme. Isolation and characterization of the gene encoding mRNA guanylytransferase subunit from Saccharomyces cerevisiae. J. Biol. Chem., 267: 9521-9528.

Shuman, S., 1997. Origins of mRNA identity: capping enzymes bind to the phosphorylated C-terminal domain of RNA polymerase II. Proc. Nat. Acad. Sci. USA., 94: 12758-12760.

Tsukamoto, T., Y. Shibagaki, S. Imajoh-Ohmi, T. Murakoshi and M. Suzuki, 1997. Isolation and characterization of the yeast mRNA capping enzyme beta subunit gene encoding RNA 5-triphosphatase, which is essential for cell viability. Biochem. Biophys. Res. Commun., 239: 116-122.
PubMed  |  Direct Link  |  

Vagner, S., C. Vagner and I.W. Mattaj, 2000. The carboxyl terminus of vertebrate poly (A) polymerase interacts with U2AF 65 to couple 3'-end processing and splicing. Genes Dev., 14: 403-413.

Wahle, E. and U. Ruegsegger, 1999. 3'-end processing of pre-mRNA in eukaryotes. FEMS Microbiol. Rev., 23: 277-295.

Wang, S.P. and S. Shuman, 1997. Structure-function analysis of the mRNA cap methyltransferase of Saccharomyces cerevisiae. J. Biol. Chem., 272: 14683-14689.

Yue, Z., E. Maldonado, R. Pillutla, H. Cho, D. Reinberg and A.J. Shatkin, 1997. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc. Nat. Acad. Sci., USA., 94: 12898-12903.

Zeng, C. and S.M. Berget, 2000. Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing. Mol. Cell. Biol., 20: 8290-8301.

Zhao, J., L. Hyman and C. Moore, 1999. Formation of mRNA 3' ends in eukaryotes: Mechanism, regulation and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev., 63: 405-445.

©  2019 Science Alert. All Rights Reserved
Fulltext PDF References Abstract