Subscribe Now Subscribe Today
Research Article
 

Transcription and mRNA Processing Events: the Importance of Coordination



A. Parent , I. Benzaghou , I. Bougie and M. Bisaillon
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Eukaryotic mRNAs are extensively modified prior to being translated into proteins. Processing events such as RNA capping, splicing and polyadenylation are required to produce fully translatable mRNAs. Growing evidences suggest that the carboxy-terminal domain of the RNA polymerase II act as a common link between these events. The importance of coordination between transcription and RNA processing is also discussed in this mini review.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

A. Parent , I. Benzaghou , I. Bougie and M. Bisaillon , 2004. Transcription and mRNA Processing Events: the Importance of Coordination. Journal of Biological Sciences, 4: 624-627.

DOI: 10.3923/jbs.2004.624.627

URL: https://scialert.net/abstract/?doi=jbs.2004.624.627

REFERENCES
1:  Shuman, S., 1997. Origins of mRNA identity: capping enzymes bind to the phosphorylated C-terminal domain of RNA polymerase II. Proc. Nat. Acad. Sci. USA., 94: 12758-12760.

2:  Furuichi, Y. and A.J. Shatkin, 2000. Viral and cellular mRNA capping: Past and prospects. Adv. Virol. Res., 55: 135-184.

3:  Beelman, C.A. and R. Parker, 1995. Degradation of mRNA in eukaryotes. Cell, 81: 179-183.
PubMed  |  Direct Link  |  

4:  Shatkin, A.J. and J.L. Manley, 2000. The ends of the affair: Capping and polyadenylation. Nat. Struct. Biol., 7: 838-842.

5:  Sachs, A.B., P. Sarnow and H.W. Hentze, 1997. Starting at the beginning, middle and end: Translation initiation in eukaryotes. Cell, 89: 831-838.
PubMed  |  Direct Link  |  

6:  Shibagaki, Y., N. Itoh, H. Yamada, S. Nagata and K. Mizumoto, 1992. mRNA capping enzyme. Isolation and characterization of the gene encoding mRNA guanylytransferase subunit from Saccharomyces cerevisiae. J. Biol. Chem., 267: 9521-9528.

7:  Schwer, B. and S. Shuman, 1994. Mutational analysis of yeast mRNA capping enzyme. Proc. Nat. Acad. Sci., USA, 91: 4328-4332.

8:  Mao, X., B. Schwer and S. Shuman, 1996. Mutational analysis of the Saccharomyces cerevisiae ABD1 gene: cap methyltransferase activity is essential for cell growth. Mol. Cell. Biol., 16: 475-480.

9:  Wang, S.P. and S. Shuman, 1997. Structure-function analysis of the mRNA cap methyltransferase of Saccharomyces cerevisiae. J. Biol. Chem., 272: 14683-14689.

10:  Ho, C.K., Y. Pei and S. Shuman, 1998. Yeast and viral RNA 5' triphosphatases comprise a new nucleoside triphosphatase family. J. Biol. Chem., 273: 34151-34156.

11:  Kramer, A., 1996. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem., 65: 367-409.

12:  Proudfoot, N.J., A. Furger and M.J. Dye, 2002. Integrating mRNA processing with transcription. Cell, 108: 501-512.
CrossRef  |  PubMed  |  Direct Link  |  

13:  Wahle, E. and U. Ruegsegger, 1999. 3'-end processing of pre-mRNA in eukaryotes. FEMS Microbiol. Rev., 23: 277-295.

14:  Zhao, J., L. Hyman and C. Moore, 1999. Formation of mRNA 3' ends in eukaryotes: Mechanism, regulation and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev., 63: 405-445.

15:  Gieselmann, V., A. Polten, J. Kreysing and K. von Figura, 1989. Arylsulfatase a pseudodeficiency: Loss of a polyadenylylation signal and N-glycosylation site. Proc. Nat. Acad. Sci., USA., 86: 9436-9440.

16:  Higgs, D.R, S.E. Goodbourn, J. Lamb, J.B. Clegg, D.J. Weatherall and N.J. Proudfoot, 1983. Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature, 306: 398-400.

17:  Orkin, S.H., T.C. Cheng, S.E. Antonarakis and H.H. Kazazian, 1985. Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human beta-globin gene. EMBO J., 4: 453-456.

18:  Cramer, P., A. Srebrow, S. Kadener, S. Werbajh and M. de la Mata et al., 2001. Coordination between transcription and pre-mRNA processing. FEBS Lett., 498: 179-182.

19:  Dahmus, M.E., 1996. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem., 271: 19009-19012.

20:  Reines, D., J.W. Conaway and R.C. Conaway, 1996. The RNA polymerase II general elongation factors. Trends Biochem. Sci., 21: 351-355.

21:  Cho, H., T.K. Kim, H. Mancebo, W.S. Lane, O. Flores and D. Reinberg D, 1999. A protein phosphatase functions to recycle RNA polymerase II. Genes Dev., 13: 1540-1552.

22:  Marshall, N.F. and M.E. Dahmus, 2000. C-terminal domain phosphatase sensitivity of RNA polymerase II in early elongation complexes on the HIV-1 and adenovirus 2 major late templates. J. Biol. Chem., 275: 32430-32437.

23:  Yue, Z., E. Maldonado, R. Pillutla, H. Cho, D. Reinberg and A.J. Shatkin, 1997. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc. Nat. Acad. Sci., USA., 94: 12898-12903.

24:  McCracken, S., N. Fong, E. Rosonina, K. Yankulov and G. Brothers et al., 1997. 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev., 11: 3306-3318.

25:  Ho, C.K. and S. Shuman, 1999. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell, 3: 405-411.

26:  Schroeder, S.C., B. Schwer, S. Shuman and D. Bentley, 2000. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev., 14: 2435-2440.

27:  McCracken, S., N. Fong, K. Yankulov, S. Ballantyne and G. Pan et al., 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature, 385: 357-361.

28:  Mortillaro, M.J., B.J. Blencowe, X. Wei, H. Nakayasu and et al., 1996. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Nat. Acad. Sci., USA., 93: 825-825.

29:  Hirose, Y., R. Tacke and J.L. Manley, 1999. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev., 13: 1234-1239.

30:  Zeng, C. and S.M. Berget, 2000. Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing. Mol. Cell. Biol., 20: 8290-8301.

31:  Dantonel, J.C., K.G. Murthy, J.L Manley and L. Tora, 1997. Transcription factor TFIID recruits factor CPSF for formation of 3' end of mRNA. Nature, 389: 399-402.

32:  Hirose, Y. and J.L Manley, 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature, 395: 93-96.

33:  Lewis, J.D. and E. Izaurralde, 1997. The role of the cap structure in RNA processing and nuclear export. Eur. J. Biochem., 247: 461-469.

34:  Niwa, M., C.C. MacDonald and S.M. Berget, 1992. Are vertebrate exons scanned during splice-site selection? Nature, 360: 277-280.

35:  Vagner, S., C. Vagner and I.W. Mattaj, 2000. The carboxyl terminus of vertebrate poly (A) polymerase interacts with U2AF 65 to couple 3'-end processing and splicing. Genes Dev., 14: 403-413.

36:  Tsukamoto, T., Y. Shibagaki, S. Imajoh-Ohmi, T. Murakoshi and M. Suzuki, 1997. Isolation and characterization of the yeast mRNA capping enzyme beta subunit gene encoding RNA 5-triphosphatase, which is essential for cell viability. Biochem. Biophys. Res. Commun., 239: 116-122.
PubMed  |  Direct Link  |  

©  2020 Science Alert. All Rights Reserved