Subscribe Now Subscribe Today
Research Article

Accumulation of Antioxidant Vitamins in Dunaliella salina

Farouk K. El Baz , Ahmed M. Aboul-Enein , Gamal S. El-Baroty , A. M. Youssef and Hanaa H. Abdel-Baky
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

Dunaliella salina a β-carotene accumulating halotolerant algae has been analyzed for the effect of various growth conditions on its antioxidant vitamin contents β-carotene, tocopherol and ascorbic acid. Vitamin contents of Dunaliella salina grown in culture contained sufficient nitrogen (70 ppm N ) and NaCl ( 10 %) under optimum light intensity 200 W were 1.78, 0.7 and 0.25 %, respectively. Increasing salt concentration (NaCl ) to 30 % and high light intensity (400 W ) increased vitamins content to 6.43, 0.45 and 0.95 %, respectively. The maximam accumulation of antioxidant vitamins occurred in Dunaliella salina was observed when the cells grown under combined stress conditions high NaCl concentration, high light intensity with nitrogen deficiency (5 ppm ). β - carotene, vitamin E and vitamin C percentages were 13.14, 1.23 and 2.5 %, respectively. These values represented 738,1751 and 1000 %, respectively when compared with values of Dunaliella salina grown under optimum conditions (70 ppm N, 10 % NaCl and light intensity 200 W). The results showed that Dunaliella salina could be a potential for mass production of antioxidant vitamins.

Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

Farouk K. El Baz , Ahmed M. Aboul-Enein , Gamal S. El-Baroty , A. M. Youssef and Hanaa H. Abdel-Baky , 2002. Accumulation of Antioxidant Vitamins in Dunaliella salina. Journal of Biological Sciences, 2: 220-223.

DOI: 10.3923/jbs.2002.220.223



1:  Abalde, J. and J. Fabregas, 1991. β-carotene, vitamin C and vitamin E content of the marine microalga Dunaliella tertiolecta culture with different nitrogen sources. Bioresour. Technol., 38: 121-125.

2:  AOAC, 1995. (Official Methods of Analysis). Association of Official Analytical Chemists. 16th Edn., K. Hlrich, Arlington, Vargenia

3:  Arad, S., E. Cohen and A. Ben Amotz, 1993. Accumulation of canthaxanthin in Chorella emersonii. Physiol. Plantarum., 87: 232-236.

4:  Augustin, J., P.B. Klein, D. Becker and B.P. Venugopal, 1985. Vitamin C. In: Methods of Vitamin Assay. Marcel Dekker, Inc., New York, USA., pp: 323

5:  Bar, E., M. Rise, M. Vishkautsan and A. Shoshana, 1995. Pigment and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J. Plant Physiol., 146: 527-534.
Direct Link  |  

6:  Ben-Amotz, A. and M. Avron, 1988. The wavelength dependence of massive of carotene synthesis in Dunaliella bardawil. J. Phycol., 25: 178-183.

7:  Ben-Amotz, A. and M. Avron, 1990. The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol., 8: 121-126.
CrossRef  |  Direct Link  |  

8:  Ben-Amotz, A., Z.A. Kay and M. Avron, 1981. Glycerol β-carotene metabolism in the halotolerant alga Dunaliella: A model system for biosolar energy conversion. TIBS, pp: 297-299.

9:  Ben-Amotz, A., A. Shaish and M. Avron, 1991. The biotechnology of cultivating Dunaliella for production of β-carotene rich algae. Bioresour. Technol., 38: 233-235.

10:  Bjornland, T., G. Borch and S.L. Jenen, 1984. Configurational studies on red algae carotenoids. Phytochem., 23: 1711-1711.

11:  Borowitzka, A.M. and J.L. Borowitzka, 1986. Dunaliella. In: Micro-Algal Biochology, Borowitzka, A.M. and J.L. Borowitzka (Eds.). Cambridge University Press, New York, USA., pp: 28-58

12:  Brown, R.M. and L.C. Farmer, 1994. Riboflavin content of six species of microalgae used in mariculture. J. Applied Phycol., 6: 61-65.
CrossRef  |  Direct Link  |  

13:  De Roeck-Holtzhauer, Y., C. Claire, F. Bresdin, L. Amicel and A. Derrien, 1991. Vitamin free amino acid and fatty acid compositions of some marine planktonic microalgae used in a quaculture. Botanica Marina, 36: 32-34.

14:  De Roeck-Holtzhauer, Y., I. Quere and C. Claire, 1993. Vitamin analysis of five planktonic micro-algae and one macro-algae. J. Applied Phycol., 3: 259-264.

15:  Fabregas, J. and C. Herrero, 1990. Vitamin content of four marine microalgae: Potential use as source of vitamin in nutrition. J. Ind. Microbiol., 5: 259-264.

16:  Fogg, G.E., 1975. Metabolic Pattern and Growth in Alga Cultures and Phytoplankton Ecology. 2nd Edn., University Wisconsin Press, Madison, WI., pp: 52-61

17:  Foote, C.S., Y.S. Chang and R.W. Denny, 1970. Chemistry of single oxygen X. carotenoids quenching parallels biological protection. J. Am. Chem. Soc., 92: 5216-5218.

18:  BPinchetti, L.J.G., Z. Ramazahov, A. Fontes and G.G. Reina, 1992. Photosynthetic characteristis of Dunaliella salina (Chlorophyceae, Dunaliellales) in relation to β-carotene content. J. Applied Phycol., 4: 11-15.

19:  Harker, M. and J.A. Young, 1995. Inhibition of astaxanthin synthesis in the green algae Haematococcus pluvialis. Eur. J. Phycol., 30: 179-187.

20:  Jsniszowska, W., 1987. Intracellular location of tocopherol biosynthesis in Calendula officinalis. Phytochem., 26: 1403-1407.

21:  Malanga, G. and S. Puntarulo, 1995. Oxidative stress and antioxidant content in Chlorella vulgaris after exposure to ultra-violet and β-radiation. Physiol. Plantarum, 94: 672-679.

22:  Malanga, G., G. Calmanovici and S. Puntarulo, 1997. Oxidative damage to chloroplasts from Chlorella vulgaris exposed to Ultraviolet β-radiation. Physiol. Plant, 101: 455-462.

23:  Merchie, G., P. Lavens, P.H. Dhert, M. Dehasque, H. Nelis, A. De Leenheer and P. Sorgeloos, 1995. Variation of ascorbic acid content in different live food organisms. Aquacult., 134: 325-337.
Direct Link  |  

24:  Ogbonna, J., T. Shota and H. Tanaka, 1998. Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J. Applied Phycol., 10: 67-74.
Direct Link  |  

25:  Payer, H.D., 1971. First report upon the organization and experimental work of the Thailand German project on the production and utilization of single cell green algae as a protein source for human nutrition. Institute of Food Research and Product Development, Kasetsar University, Bangkok, Thailand.

26:  Poll, A. and H. Rennenberg, 1994. Photo Oxidative Stress in Trees. In: Causes of Photo Oxidative Stress and Amelioration of Defense Systems in Plants, Foyer, C.H. and P.M. Mullineaux (Eds.). CRC Press, Boca Raton, pp: 199-218

27:  Rice, M., E. Cohen, M. Vishkautsan, H.E. Cojocau, E. Gotrlieb and S. Arad, 1994. Accumulation of secondary carotenoids in Chlorella zofingiensis. J. Plant Physiol., 144: 287-292.
Direct Link  |  

28:  Running, A.J., J.R. Huss and T.P. Olson, 1994. Heterotrophic production of ascorbic acid by micro-algae. J. Applied Phycol., 6: 99-104.

29:  Semenenko, E.V. and A.A. Abdullaev, 1980. Parametric control of β-carotene biosynthesis in Dunaliella salina cells under conditions of intensive cultivation. Fizioloiya Rastenii., 27: 31-41.

30:  Shalata, A. and M. Tal, 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum, 104: 169-174.
CrossRef  |  Direct Link  |  

31:  Sherma, J. and B. Fried, 1990. Handbook of Thin-Layer Chromatography. Marcel Dekker, Inc., New York, Basel, Hong Kong, pp: 625-662

32:  Tausz, M., M. Soledad and D. Grill, 1998. Antioxidative defence and photoprotection in poine needles under field conditions: A multivariate approach to evaluate patterns of physiological responses at natural sites. Physiol. Plant, 104: 760-764.

33:  Venkataraman, L.V., T. Somasekaran and E.W. Becker, 1994. Replacement value of blueBgreen algae (Spirulina plateensis) for fish meal and a vitamin, mineral premix for broiler chicks. Br. Poult. Sci., 35: 373-381.

34:  Zhang, D.H. and Y.K. Lee, 1997. Enhanced accumulation of secondary carotenoids in a mutant of green algae Chlorococcum sp. J. Applied Phycol., 9: 459-463.

35:  Zhang, D.H., Y.K. Lee, M.L. Ng and S.M. Phang, 1997. Composition and accumulation of secondary carotenoids in Chlorococcumm sp. J. Applied Phycol., 9: 147-155.

©  2021 Science Alert. All Rights Reserved