Subscribe Now Subscribe Today
Research Article
 

A Semi-Markov Process based Optimization Method for Availability of Hybrid Flow Shop



Fei Simiao, Li Zheng and Huo Lin
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

As Hybrid Flow Shops (HFS) are common manufacturing environments, availability of HFS is a basic indicator for measuring usage ability. Optimal maintenance strategy which achieves maximum availability with cost constraints, provides a better platform for its scheduling problems. We propose an availability model in this study by using Semi-Markov Process (SMP) under a general maintenance strategy which suit for general distribution of machines’ life time distribution and maintenance time distribution. Based on the availability model, the maintenance site configuration optimization method is with total cost constrains. Furthermore, the method is applied to a simple hybrid flow shop and showed to be effective.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Fei Simiao, Li Zheng and Huo Lin, 2013. A Semi-Markov Process based Optimization Method for Availability of Hybrid Flow Shop. Journal of Applied Sciences, 13: 3340-3344.

DOI: 10.3923/jas.2013.3340.3344

URL: https://scialert.net/abstract/?doi=jas.2013.3340.3344
 

REFERENCES
1:  Allaoui, H. and A. Artiba, 2004. Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints. Comput. Ind. Eng., 47: 431-450.
CrossRef  |  Direct Link  |  

2:  Baxter, L.A., E.M. Scheuer, D.J. McConalogue and W.R. Blischke, 1982. On the tabulation of the renewal function. Technometrics, 24: 151-156.
CrossRef  |  

3:  Besbes, W., J. Teghem and T. Loukil, 2010. Scheduling hybrid flow shop problem with non-fixed availability constraints. Eur. J. Ind. Eng., 4: 413-433.
CrossRef  |  

4:  Botta-Genoulaz, V., 2000. Hybrid flow shop scheduling with precedence constraints and time lags to minimize maximum lateness. Int. J. Prod. Econ., 64: 101-111.
CrossRef  |  

5:  Carpov, S., J. Carlier, D. Nace and R. Sirdey, 2012. Two-stage hybrid flow shop with precedence constraints and parallel machines at second stage. Comput. Oper. Res., 39: 736-745.
CrossRef  |  

6:  Cekyay, B. and S. Ozekici, 2010. Mean time to failure and availability of semi-Markov missions with maximal repair. Eur. J. Oper. Res., 207: 1442-1454.
CrossRef  |  

7:  Cohen, A.M., 2006. Numerical Methods for Laplace Transform Inversion. Springer, New York.

8:  Coleman, J.J., 1963. Evaluation of automatic checkout for system availability. Society of Automotive Engineers, Warrendale, PA., USA.

9:  Gupta, V. and S. Dharmaraja, 2011. Semi-Markov modeling of dependability of VoIP network in the presence of resource degradation and security attacks. Reliab. Eng. Syst. Safety, 96: 1627-1636.
CrossRef  |  

10:  Hmida, A.B., M. Haouari, M.J. Huguet and P. Lopez, 2011. Solving two-stage hybrid flow shop using climbing depth-bounded discrepancy search. Comput. Ind. Eng., 60: 320-327.
CrossRef  |  

11:  Lin, H.T. and C.J. Liao, 2003. A case study in a two-stage hybrid flow shop with setup time and dedicated machines. Int. J. Prod. Econ., 86: 133-143.
CrossRef  |  Direct Link  |  

12:  Linn, R. and W. Zhang, 1999. Hybrid flow shop scheduling: A survey. Comput. Ind. Eng., 37: 57-61.
CrossRef  |  

13:  Liu, B., l. Wang and Y.H. Jin, 2008. An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers. Comput. Operat. Res., 35: 2791-2806.
CrossRef  |  

14:  Lopez Droguett, E., M. das Chagas Moura, C. Magno Jacinto and M. Feliciano Silva, 2008. A semi-Markov model with Bayesian belief network based human error probability for availability assessment of downhole optical monitoring systems. Simul. Modell. Pract. Theory, 16: 1713-1727.
CrossRef  |  

15:  Mettas, A. and Z. Wenbiao, 2005. Modeling and analysis of repairable system with general repair. Proceedings of the Annual Reliability and Maintainabilty Symposium, January 24-27, 2005, Alexandaria, Virginia, pp: 176-182.

16:  Ouhbi, B. and N. Limnios, 2003. Nonparametric reliability estimation of semi-Markov processes. J. Stat. Planning Inference, 109: 155-165.
CrossRef  |  

17:  Ruiz, R. and J.A. Vazquez-Rodriguez, 2010. The hybrid flow shop scheduling problem. Eur. J. Oper. Res., 205: 1-18.
CrossRef  |  

18:  Tomasevicz, C.L. and S. Asgarpoor, 2009. Optimum maintenance policy using semi-Markov decision processes. Electr. Power Syst. Res., 79: 1286-1291.
CrossRef  |  

19:  Uetake, T., H. Tsubone and M. Ohba, 1995. A production scheduling system in a hybrid flow shop. Int. J. Prod. Econ., 41: 395-398.
CrossRef  |  

20:  Voss, S. and A. Witt, 2007. Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-word application. Int. J. Prod. Econ., 105: 445-458.

21:  Wood, A., 1994. Availability modeling. IEEE Circ. Devices Mag., 10: 22-27.
CrossRef  |  

22:  Zhang, Y.L., 2002. A geometric-process repair-model with good-as-new preventive repair. IEEE Trans. Reliab., 51: 223-228.
CrossRef  |  

©  2021 Science Alert. All Rights Reserved