Subscribe Now Subscribe Today
Research Article
 

Prediction of China’s Coal Price During Twelfth Five-year-plan Period Based on ANN and RNM-BCC-LS-SVM Method



Zeng Ming, Wang Yi , Xue Song and Wang Zhijie
 
ABSTRACT

Coal resource plays a significant role in primary energy production and consumption in C hina. Thus, coal price has a great influence on national economy, it is very meaningful to predict coal price. However, because of limited data availability, further study is requied to investigate the precision and reasonability of those methods such as multiple regression method, dynamic analysis model, neural network method and so on. In this study, we use Artificial Neural Network (ANN) to select key influencing factors of coal price. And then, we introduce the Bacterial Colony Chemotaxis (BCC) algorithm based on random Nelder Mead (RNM) to determine the extra-parameters used in least squares-support vector machine (LS-SVM) for coal price prediction rapidly and reasonably. At last, a case study of D atong premium blend coal at Qinhuangdao port is presented predicting its coal price during the twelfth Five-year-planning. Compared with the prediction results of ANN and BCC, the suitability and novelty of ANN and RNM-BCC-LS-SVM is fully demonstrated.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Zeng Ming, Wang Yi , Xue Song and Wang Zhijie , 2013. Prediction of China’s Coal Price During Twelfth Five-year-plan Period Based on ANN and RNM-BCC-LS-SVM Method. Journal of Applied Sciences, 13: 3055-3060.

DOI: 10.3923/jas.2013.3055.3060

URL: https://scialert.net/abstract/?doi=jas.2013.3055.3060

REFERENCES
Bloch, H., S. Rafiq and R. Salim, 2012. Coal consumption, CO2 emission and economic growth in China: Empirical evidence and policy responses. Energy Econ., 34: 518-528.
CrossRef  |  Direct Link  |  

Cattaneo, C., M. Manera and E. Scarpa, 2011. Industrial coal demand in China: A provincial analysis. Resour. Energy Econ., 33: 12-35.
CrossRef  |  Direct Link  |  

Dahl, C.A., 2012. Measuring global gasoline and diesel price and income elasticities. Energy Policy, 41: 2-13.
CrossRef  |  Direct Link  |  

Li, R., H. Su, Z. Wang, G. Deng and T. Chen, 2011. Medium-and long-term load forecasting based on heuristic least square support vector machine. Power Syst. Technol., 35: 195-199.
Direct Link  |  

Yuan, J.H., J.G. Kang, C.H. Zhao and Z.G. Hu, 2008. Energy consumption and economic growth: Evidence from China at both aggregated and disaggregated levels. Energy Econ., 30: 3077-3094.
CrossRef  |  

Zaklan, A., A. Cullmann, A. Neumann and C. von Hirschhausen, 2012. The globalization of steam coal markets and the role of logistics: An empirical analysis. Energy Econ., 34: 105-116.
CrossRef  |  Direct Link  |  

Zhong, W.M., D.Y. Pi and Y.X. Sun, 2005. Support vector machine based nonlinear model multi-step-ahead optimizing predictive control. J. Cent. South Univ. Technol., 12: 591-595.
CrossRef  |  Direct Link  |  

©  2019 Science Alert. All Rights Reserved