Subscribe Now Subscribe Today
Research Article
 

Community Detecting in Bipartite Network Based on Principal Components Analysis



Wei Liu and Ling Chen
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

The identification of communities is significant for the understanding of network structures and functions. In this study, we propose a framework to address the problem of community detection in bipartite networks based on principal components analysis. We apply the algorithm to real-world network data, showing that the algorithm successfully finds meaningful community structures of bipartite networks.

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Wei Liu and Ling Chen, 2013. Community Detecting in Bipartite Network Based on Principal Components Analysis. Journal of Applied Sciences, 13: 2421-2428.

DOI: 10.3923/jas.2013.2421.2428

URL: https://scialert.net/abstract/?doi=jas.2013.2421.2428
 

REFERENCES

1:  Costa, L.F., F.A. Rodrigues, G. Travieso and P.R.V. Boas, 2007. Characterization of complex networks: A survey of measurements. Adv. Phys., 56: 167-242.
Direct Link  |  

2:  Fortunato, S., 2010. Community detection in graphs. Phys. Rep., 486: 75-174.
CrossRef  |  

3:  Newman, M.E.J., 2004. Fast algorithm for detecting community structure in networks. Phys. Rev. E, Vol. 69.
CrossRef  |  Direct Link  |  

4:  Clauset, A., M.E.J. Newman and C. Moore, 2004. Finding community structure in very large networks Phys. Rev. E, 70: 066111-066116.
CrossRef  |  

5:  Kernighan, B.W. and S. Lin, 1970. An efficient heuristic procedure for partitioning graphs. Bell Labs Tech. J., 49: 291-307.
CrossRef  |  Direct Link  |  

6:  Xiang, B., E.H. Chen and T. Zhou, 2009. Finding community structure based on subgraph similarity. Stud. Comput. Intell., 207: 73-81.
CrossRef  |  

7:  Ruan, J. and W. Zhang, 2008. Identifying network communities with a high resolution. Phy. Rev., Vol. 77,
Direct Link  |  

8:  Duch, J. and A. Arenas, 2005. Community detection in complex networks using extremal optimization. Phys. Rev. E, Vol. 72
Direct Link  |  

9:  Wang, X.T., G.R. Chen and H.T. Lu, 2007. A very fast algorithm for detecting community structures in complex networks. Phys. A, 384: 667-674.
CrossRef  |  

10:  Newman, M.E.J., 2006. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev., Vol, E 74.
Direct Link  |  

11:  Chen, D.B., Y. Fu and M.S. Shang, 2009. A fast and efficient heuristic algorithm for detecting community structures in complex networks. Phys. A, 388: 2741-2749.
CrossRef  |  

12:  Chen, W.Q., J.A. Lu and J. Liang, 2009. Research in disease-gene network based on bipartite network projection. Complex Syst. Comp. Sci., 6: 13-19.
Direct Link  |  

13:  Davis, A., B.B. Gardner and M.R. Gardner, 1941. Deep South. University of Chicago Press, USA

14:  Barber, M.J., 2007. Modularity and community detection in bipartite networks. Phys. Rev. E, 76: 1-9.
CrossRef  |  Direct Link  |  

15:  Guimera, R., M. Sales-Pardo and L.A. Amaral, 2007. Module identification in bipartite and directed network. Phys. Rev. E, Vol. 76.
CrossRef  |  

16:  Murata, T. and T. Ikeya, 2010. A new modularity for detecting one-to-many correspondence of communities in bipartite networks. Adv. Complex Syst., 13: 19-31.
Direct Link  |  

17:  Suzuki, K. and K. Wakita, 2009. Extracting multi-facet community structure from bipartite networks. Proceedings of the International Conference on Computational Science and Engineering, Volume 4, August 29-31, 2009, Vancouver, BC., pp: 312-319
CrossRef  |  

©  2022 Science Alert. All Rights Reserved