Subscribe Now Subscribe Today
Research Article
 

Experimental Investigations on Delamination to Improve the Hole Quality in Chopped Strand Mat GFRP Material During Drilling Operation



T. Panneerselvam and S. Raghuraman
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Fiber Reinforced Composite materials have an increased applications in recent days due to its enhanced structural properties and in turn mechanical and thermal properties. The heterogeneous nature of this kind of material makes complications in machining operation. However, drilling is a common machining practice for assembly of components. The quality of holes produced in Chopped Strand Mat Glass Fiber Reinforced Plastic (CSMat GFRP) material is severely affected by internal delamination besides with entry and exit delamination. The objective of the study was to apply the Taguchi methods to achieve an improved hole quality considering minimum delamination through proper selection of drilling parameters. A plan of experiments based on orthogonal main effect design has been used to get data for analysis. The signal to noise ratio and the analysis of variance are employed to investigate the drilling characteristics of CSMat GFRP material using high speed steel drills.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

T. Panneerselvam and S. Raghuraman, 2012. Experimental Investigations on Delamination to Improve the Hole Quality in Chopped Strand Mat GFRP Material During Drilling Operation. Journal of Applied Sciences, 12: 1063-1066.

DOI: 10.3923/jas.2012.1063.1066

URL: https://scialert.net/abstract/?doi=jas.2012.1063.1066
 
Received: March 10, 2012; Accepted: March 21, 2012; Published: June 30, 2012



INTRODUCTION

The use of composite material is being increased in recent years, because of their special mechanical, thermal and structural properties. Most of the researchers have used Glass Fiber Reinforced Polymers for their studies. GFRP material is being inexpensive material compared to other composite material and having wider industrial applications. The drilling operation is an important machining process required for fastening the components in an assembly. To establish the better quality of hole made by drilling operation, the hole must be free from any damages like delamination etc. It is quiet difficult to generate hole without any damage, however changing the influencing machining parameters can minimize the same. The hole surface quality mainly depends on cutting parameters, like tool material, tool geometry, cutting forces etc. (Hocheng and Puw, 1992; Chen, 1997; Lin and Chen, 1996; Piquet et al., 2000). The influence of the cutting parameters in damage around the drilled hole with different tool geometry has been studied on discs made of GFRP (Polyester matrix reinforced with 65% of glass fiber) produced by hand lay-up (Davim et al., 2004). Enemuoh et al. (2004) have studied the application of Taguchi and a multi-objective optimization criterion and reported that it is possible to achieve cutting parameters that allow the absence of damage in drilling of fiber reinforced plastics. Using High Speed Steel (HSS) drill, a series of vibratory drilling experiments have been conducted to assess the delamination factor and it was found that vibratory drilling is a promising machining technique (Arul et al., 2006).

Delamination is being the most critical defect, among the defects caused by drilling operations. Delamination lowers the bearing strength thereby reducing the structural integrity of the material (Won and Dharan, 2002; Caprino and Tagliaferri, 1995). Davim and Reis (2003) have studied the drilling of laminated composite materials by conventional tools and concluded that the quality of cut surfaces depend on the cutting parameters, tool geometry and tool material. A comparative study aiming to evaluate the influence of the drill geometry on unidirectional laminate glass reinforced plastics (Bhatnagar et al., 2004; Singh and Bhatnagar, 2006). Khashaba (2004) has investigated the machining of GFRP composites produced by different matrix materials and different reinforcing shapes and concluded that the composite with cross winding had a surface without delamination and the woven composite with different matrix materials had a negligible effect on thrust. Hocheng and Tsao (2006) have studied the delamination using specially designed drills and established a relationship between feed rate, cutting speed and drill diameter. Kurt et al. (2009) have applied Taguchi methods and optimized the cutting parameters for surface finish and hole diameter accuracy in dry drilling operation.

The delamination of FRP composites under machining plays a vital role in determining the machining quality. In this research, an attempt is made to study the internal delamination that cause poor surface quality of hole during drilling of CSMat GFRP apart from entry and exit delamination. The work is carried out based on a statistical based approach namely, Design of Experiments (DOE). The standard HSS twist drills are used in this experimental work to investigate the internal delamination of CSMat GFRP material under various influencing parameters such as drill diameter, spindle speed and feed rate.

MATERIALS AND METHOD

Material and machine used: The specimen material made from the Chopped Strand Mat Glass Fiber Reinforced Plastic of size of a slab of 300x300x23 mm was used for the experiments. The physical properties of CSMat GFRP materials are highlighted in the Table 1. The drilling experiments were conducted in dry condition and at room temperature on MCV-400 with a workspace of 600x415x460 mm and the machine has a speed range of 60-6000 rpm.

Experimental design: The design of experiments is an effective tool to optimize the various machining parameters. In this study, a three level L9 orthogonal main effect design was used. This design has an advantage of reducing the number of experiments. The identified parameters were drill diameter, spindle speed and feed rate. The factors and the levels of factors used are listed in the Table 2.

Determining delamination value: The damage around the holes was measured with 3D Coordinate Measuring Machine (SPECTRA Model) by the procedure: the diameter of the hole in the damage zone is measured for four times and the maximum value was recorded as Dmax value. The delamination factor was determined by the ratio of maximum diameter (Dmax) of the damage zone to the hole diameter (D). Therefore, the equation used to determine the delamination factor is:

(1)

where, Fd is the delamination factor, Dmax is the maximum diameter of the damage zone in mm and D is the diameter of the hole in mm.

Table 1: Properties of CSMat GFRP material

Table 2: Levels of factors

Table 3: Experimental results for delamination factor and S/N ratio

The experiments were replicated for two times and the average values of the delamination factor obtained were tabulated in Table 3. The results were analyzed using S/N ratio and ANOVA analysis.

Analysis of drilling parameters
Analysis of S/N ratio:
S/N ratio is applied to measure the quality characteristic deviating from the desired value. The term signal represents the desirable value of the response variable whereas the term noise represents the undesirable value of the response variable. The S/N ratio η is defined as:

η = - 10 log (MSD)

where, MSD is the mean square deviation for the response characteristics.

To obtain optimal drilling performance, the-lower-the-better quality characteristic for delamination was taken. The MSD for the-lower-the-better quality characteristic can be given as:

MSD = (1/n ) ΣFdi2 ; i = 1,…,n

where, n is the number of repeated experimental run and Fdi is the value of delamination factor for the ith test.

The experimental results for delamination factor and the corresponding S/N ratio are shown in the following Table 3.

Table 4: S/N response table for delamination factor

Fig. 1: S/N response (Drill dia.) for delamination factor

Fig. 2: S/N response (Spindle speed) for delamination factor

Fig. 3: S/N response (Feed rate) for delamination factor

The S/N response table and S/N response chart for delamination factor are given in Table 4 and in Fig. 1 to Fig. 3.

It is observed that higher S/N ratio for drill diameter is at the first level (Fig. 1), higher S/N ratio for spindle speed is at the third level (Fig. 2) and higher S/N ratio for feed rate is at the first level (Fig. 1).

Table 5: Results of ANOVA for delamination factor

Based on the analysis of S/N ratio and from S/N Response Table, the optimal drilling performance which will minimize the delamination factor was found as 8 mm drill size (level 1), 3000 rpm spindle speed (level 3) and 50 mm min-1 feed rate (level 1).

Analysis of variance: The analysis of variance is extensively used to investigate the design parameters, which significantly affect the quality characteristics. For this, the total variability of the S/N ratios, which is measured by the sum of the squared deviations from the total mean S/N ratio, is partitioned into contribution by each of the design parameter and the error, i.e.,

SST = SSdrilldia + SSspindle speed + SSfeed rate + SSerror

To perform the F-test, the mean of squared deviations is calculated from the sum of squared deviations of design parameter divided by the degrees of freedom associated with the design parameter. Then, the F-value for each design parameter is the ratio between the mean squared deviations and the mean squared error. The F-ratio corresponding to 95% confidence level from statistical table is used to compare the F-value calculated for each design parameter. The percentage contribution by each of the design parameters in the total sum of squared deviations SST is a ratio between the sum of squared deviations of each design parameter and the total sum of squared deviations SST.

Table 5 shows the results of ANOVA for delamination factor. Drill diameter has a significant effect on the delamination value. The percentage contribution of each parameter on total variation is 88.19, 2.62, 7.64%, respectively.

Confirmation test: Using the aforementioned data, one can predict the minimum delamination value using the optimal level of the design parameters selected. To verify the predicted results, a confirmation test was conducted at the first level of drill diameter (A1), the third level of spindle speed (B3) and the first level of feed rate (C1). Table 6 shows the comparison of predicted value with experimental value of delamination along with S/N ratio, good agreement being observed.

Table 6: Confirmation results

CONCLUSIONS

The out come of research work are listed below:

It is found that the Taguchi method of approach using L9 orthogonal arrays could be used to analyze the delamination of CSMat GFRP material under drilling operations
Signal to Noise ratio analysis has been used to find the optimal drilling parameters suitable for minimal delamination which in turn improves the hole quality in drilling
It is experimentally found that the optimum parameters for the drilling are identified from the S/N response table as 8 mm drill size, 3000 rpm spindle speed and 50 mm/min feed rate
It is observed from the ANOVA table that the drill size plays a significant role in determining the delamination value rather than the other parameters considered in this work
ANOVA results also show the percentage contribution of the drill diameter, spindle speed and feed rate on total variation by 88.19, 2.62 and 7.64%, respectively
The experimental results have good agreement with the predicted results obtained from the confirmation tests

ACKNOWLEDGMENTS

The authors sincerely thank the Management of SASTRA University and Shanmugha Precision Forgings Ltd. (a unit of SASTRA)-Thanjavur for the extended support and facilities provided to complete this work successfully.

REFERENCES
1:  Hocheng, H. and H. Puw, 1992. On drilling characteristics of fiber-reinforced thermoset and thermoplastics. Int. J. Mach. Tools Manuf., 32: 583-592.
Direct Link  |  

2:  Chen, W., 1997. Some experimental investigations in the drilling of Carbon Fiber-Reinforced Plastics (CFRP) composite laminates. Int. J. Mach. Tools Manuf., 38: 1097-1108.
Direct Link  |  

3:  Lin, S.C. and I.K. Chen, 1996. Drilling of carbon fiber-reinforced composite material at high speed. Wear, 194: 156-162.
Direct Link  |  

4:  Piquet, R., B. Ferret, F. Lachaud and P. Swider, 2000. Experimental analysis of drilling damage in thin carbon/epoxy laminate using special drills. Composite Part a: Appl. Sci. Manuf., 31: 1107-1115.
Direct Link  |  

5:  Davim, J.P., P. Reis and C. Conceicao, 2004. Antonio, experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up. Int. J. Compos. Sci. Technol., 64: 289-297.

6:  Enemuoh, E.U., A.S. EI-Gizawy and A.C Okafor, 2004. An approach for development of damage-free drilling of carbon fiber reinforced thermosets. Int. J. Mach. Tools Manuf., 41: 1795-1814.
CrossRef  |  

7:  Arul, S., L. Vijayaraghavan, S.K. Malhotra and R. Krishnamurthy, 2006. The effect of vibratory drilling on hole quality in polymeric composites. Int. J. Mach. Tools Manuf., 46: 252-259.
Direct Link  |  

8:  Won, M.S. and C.K.H. Dharan, 2002. Drilling of aramid and carbon fiber polymer composites. ASME J. Manuf. Sci. Eng., 124: 778-783.
Direct Link  |  

9:  Caprino, G. and V. Tagliaferri, 1995. Damage development in drilling glass fiber reinforced plastics. Int. J. Mach. Tools Manuf., 35: 817-829.
CrossRef  |  

10:  Davim, J.P. and P. Reis, 2003. Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Composite Structures, 59: 481-487.
CrossRef  |  

11:  Bhatnagar, N., I. Singh and D. Nayak, 2004. Damage investigation in drilling of glass fiber reinforced plastic composite laminates. Mater. Manuf. Processes, 19: 995-1007.
Direct Link  |  

12:  Singh, I. and N. Bhatnagar, 2006. Drilling of uni-directional glass fiber reinforced plastic (UD-GFRP) composite laminates. Int. J. Adv. Manuf. Technol., 27: 870-876.
CrossRef  |  

13:  Khashaba, U.A., 2004. Delamination in drilling GFR-thermoset composites. Composite Structure, 63: 313-327.
CrossRef  |  

14:  Hocheng, H. and C.C. Tsao, 2006. Effects of special drill bits on drilling-induced delamination of composite materials. Int. J. Mach. Tools Manuf., 46: 1403-1416.
Direct Link  |  

15:  Kurt, M., E. Bagci and Y. Kaynak, 2009. Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes. Int. J. Adv. Manuf. Technol., 40: 458-469.
CrossRef  |  

©  2021 Science Alert. All Rights Reserved