Subscribe Now Subscribe Today
Research Article
 

A New Systematic Procedure to Design an Automatic Generation Controller



A. Khodabakhshian
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

A new method to tune the controller parameters is presented in study for Automatic Generation Control (AGC) of hydro turbine power systems. The controller parameters are adjusted such that the maximum phase is located on the right-most point of the ellipse, corresponding the maximum peak resonance on the Nichols chart. For this system making the open-loop frequency response curve tangent to a specified ellipse is an efficient method for controlling the overshoot, the stability and the dynamics of the system. The robustness of the feedback PID controller has been investigated on a multimachine power system model and the results are shown to be consistent with the expected performance. The results are also compared with a conventional PI controller and shown to be superior; especially since the transient droop compensator of the speed governor is removed a much faster response is obtained. The region of acceptable performance for the LFC covers a wide range of operating and system conditions.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

A. Khodabakhshian , 2007. A New Systematic Procedure to Design an Automatic Generation Controller. Journal of Applied Sciences, 7: 3381-3390.

DOI: 10.3923/jas.2007.3381.3390

URL: https://scialert.net/abstract/?doi=jas.2007.3381.3390

REFERENCES
1:  Anonymous, 1973. Dynamic models for steam and hydro turbines in power system studies. IEEE Committee Report. IEEE PES Winter Meeting, New York, pp: 1904-1915.

2:  Dash, P.K., A.C. Liew and B.R. Mishra, 1998. An adaptive PID stabilizer for power systems using fuzzy logic. Elect. Power Syst. Res., 44: 213-222.
Direct Link  |  

3:  Eitelberg, E., 1987. A regulating and tracking PI(D) controller. Int. J. Control, 45: 91-95.

4:  Gross, G. and J.W. Lee, 2001. Analysis of load frequency control performance assessment criteria. IEEE Trans. Power Syst., 16: 520-525.
Direct Link  |  

5:  Hiyama, T., 1989. Application of rule based stabilizing controller to power systems. IEE Proc., Gen. Trans. Distrib., 136: 175-181.

6:  Kanniah, J., S.C. Tripathy, O.P. Malik and G.S. Hope, 1984. Microprocessor-based adaptive load-frequency control. IEE Proc., Gen. Trans. Distrib., 131: 121-128.

7:  Khodabakhshian, A. and N. Golbon, 2005. Robust load frequency controller design for hydro power systems. Proceeding of the Conference CCA 2005, Control Applications, August 28-31, 2005, Toronto, Ont., pp: 1510-1515.

8:  Kumar, A., O.P. Malik and G.S. Hope, 1985. Variable structure system control applied to AGC of an interconnectedpower system. IEE Proc. Gen. Trans. Distrib., 132: 23-29.

9:  Kundur, P., 1994. Power System Stability and Control. 1st Edn., McGraw-Hill Professional, USA., ISBN-10: 007035958X.

10:  Lim, K.Y., Y. Wang and R. Zhou, 1996. Robust decentralized load-frequency control of multi-area power systems. Proc. Inst. Elect. Eng. Gen. Trans. Dist., 143: 377-386.
Direct Link  |  

11:  Liu, F., Y.H. Song, J. Ma, S. Mei and Q. Lu, 2003. 200Optimal load frequency control in restructured power systems. IEE Proc. Gener. Trans. Distrib., 150: 87-95.
Direct Link  |  

12:  Poulin, E. and A. Pomerleau, 1997. Unified PID design method based on a maximum peak resonance specification. IEE Proc. Control Theor. Applied, 144: 566-574.
Direct Link  |  

13:  Rahi, M.H. and A. Feliachi, 1998. H-Infinity robust decentralized controller for nonlinear power systems. Optimal Control Appl. Methods, 19: 345-361.

14:  Rerkpreedapong, D., A. Hasanovis and A. Feliachi, 2003. Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Trans. Power Syst., 18: 855-861.
Direct Link  |  

15:  Saadat, H., 1999. Power System Analysis. McGraw-Hill, New York, USA.

16:  Stankovic, A.M., G. Tadmor and T.A. Sakharuk, 1999. On robust control analysis and design for load frequency regulation. IEEE Trans. Power Syst., 13: 449-455.
Direct Link  |  

17:  Tang, T.C., Z.T. Ding and H. Yu, 2002. Decentralized power system load frequency control beyond the limit of diagonal dominance. Elect. Power Energy Syst., 24: 173-184.
Direct Link  |  

18:  Tripathy, S.C., P.S. Chandramohanan and R. Balasubramanium, 1998. Self tuning regulator for adaptive load frequency control of power system. J. Inst. Eng. India, 79: 103-108.

19:  Valk, I., M. Vajta, L. Keviczky, R. Haber and J. Hettessy, 1985. Adaptive load-frequency control of Hungrian power system. Automatica, 21: 129-137.

20:  Vegte, V.J., 1994. Feedback Control Systems. Prentice-Hall, London.

21:  Yu, Y.N., 1983. Electric Power System Dynamic. Academic Press, UK., pp: 255.

©  2021 Science Alert. All Rights Reserved