Subscribe Now Subscribe Today
Research Article

Lattices of SK-Partitions

Shanaz Ansari Wahid , Norris Sookoo and Ashok Sahai
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

Lattice theory and combinatorial set theory are applied in the study of SK-partitions. The rank function of a lattice SK-partitions is investigated and bounds are obtained for the sizes of chains, antichains and other subsets. Regular, geometric lattices of SK-partitions are also considered. Lattice theory has now many upcoming modern applications.

Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

Shanaz Ansari Wahid , Norris Sookoo and Ashok Sahai , 2007. Lattices of SK-Partitions. Journal of Applied Sciences, 7: 2366-2370.

DOI: 10.3923/jas.2007.2366.2370


1:  Calteneo, G. and D. Ciucci, 2004. On the lattice structure of preclusive rough sets. Proceedings of the International Conference on Fuzzy Systems, July 25-29, 2004, IEEE Computer Society Washington, DC., USA., pp: 121-126.

2:  Canfield, E.R., 1998. The size of the largest antichain in the partition lattice. J. Combinatorial Theory, Ser. A, 83: 188-201.
Direct Link  |  

3:  Delsarte, P., 1976. Association schemes and t-designs in regular semilattices. J. Combinatorial. Theory, Ser. A, 20: 230-243.

4:  Delsarte, P., 1977. Hahn polynomials, discrete harmonics and t-designs. Siam J. Applied Math., 34: 157-166.

5:  Elzobi, M. and Z. Lonc, 2003. Partitioning Boolean lattices into antichains. Discrete Math, 260: 45-55.
Direct Link  |  

6:  Greene, C. and D.J. Kleitman, 1978. Proof Techniques in the Theory of Finite Sets, in Studies in Combinatorics. Math Association Amercian, USA., pp: 22-79.

7:  Griggs, J.R., 1977. Sufficient conditions for a symmetric chain order. Siam J. Applied Math., 32: 807-809.

8:  Gulminelli, F., P.H. Chomaz and M. Agostino, 2005. Tracking energy fluctuations from fragment partitions in the lattice gas model. Phys. Rev. C, 72: 064618-064618.
Direct Link  |  

9:  Herrman, E., 2001. Infinite chains and antichains in computable partial orderings. J. Symbolic Logic, 66: 923-934.
Direct Link  |  

10:  Rota, G. and T.C. Wallstrom, 1997. Stochastic integrals: A combinatorial approach. Ann. Probabil., 25: 1257-1283.

11:  Sharma, B.D. and M.L. Kaushik, 1986. Algebra of Sharma and Kaushik=s metric inducing partitions of Zq. J. Comb. Inform. Sys. Sci., 11: 19-32.

12:  Simion, R., 1995. On q-analogues of partially ordered sets. J. Combinatorial Theory, Ser. A., 72: 135-183.
Direct Link  |  

13:  Liang, W.H., W.K. Chen and S.Q. Gao, 1990. Applications of lattice theory to graph decomposition. Circuits. Sys. Sign. Process., 9: 181-195.
CrossRef  |  Direct Link  |  

14:  Zaremba, S.K., 1976. On Cartesian products of good lattices. Math. Comput., 30: 546-552.

©  2021 Science Alert. All Rights Reserved