Subscribe Now Subscribe Today
Research Article
 

Three Phase Induction Motor Faults Detection by Using Radial Basis Function Neural Network



Ahmed N. Abd Alla
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

In the present study the Artificial Neural Network (ANN) technique for the detection of (bearing and stator inter turn faults) incipient faults in an induction motor bas been explored. Radial basis function approach has been used for ANN Training and test. Three phase instantaneous currents and angular velocity depending on rotor speed are utilized in proposed approach. An experimental setup is used to implement an online fault defector

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Ahmed N. Abd Alla , 2006. Three Phase Induction Motor Faults Detection by Using Radial Basis Function Neural Network. Journal of Applied Sciences, 6: 2817-2820.

DOI: 10.3923/jas.2006.2817.2820

URL: https://scialert.net/abstract/?doi=jas.2006.2817.2820

REFERENCES
1:  Benbouzid, M.E.H., 2000. A review of induction motors signature analysis as a medium for faults detection. IEEE Trans. Ind. Elect., 47: 984-993.
CrossRef  |  Direct Link  |  

2:  Bonnett, A.H. and G.C. Soukup, 1992. Cause and analysis of stator and rotor failures in three-phase squirrel cage induction motors. IEEE Trans. Ind. Appl., 28: 921-937.
CrossRef  |  

3:  Marcus, A.C., T.G. Habetler and G.B. Kliman, 1998. Insulation failure prediction in AC machines using Line- Neutral Voltages. IEEE Trans. Ind. Appl., 34: 1234-1239.
CrossRef  |  

4:  Chow, M.Y., 1997. Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection. World Scientific Publication Co., New Jersey.

5:  Farag, S.F., R.G. Bartheld and T.G. Habrtler, 1996. An integrated on-line motor protection system. IEEE Industry Appl. Maga., 2: 21-26.
Direct Link  |  

6:  Kolla, S.R. and L. Varatharasa, 2000. Identifying 3-phase induction motor faults using artificial neural networks. ISA Trans., 39: 433-439.

7:  Joksimovic, G.M. and J. Penman, 2000. The detection of inter-turn short circuits in the stator windings of operating motors. IEEE Trans. Ind. Elect., 47: 1078-1084.

8:  Schoen, R.R., B.K. Lin, T.G. Habetler, J.H. Schlag and S. Farag, 1995. An unsupervised, on-line system for induction motor fault detection using stator current monitoring. IEEE Trans. Industry Appl., 31: 1280-1286.
CrossRef  |  Direct Link  |  

9:  Siddique, A., G.X.Y. Adava and B. Sin, 2003. Applications of artificial intelligence techniques for induction machines stator fault diagnostics. Proceedings of the 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Aug. 24-26, Atlanta, pp: 29-34.

10:  Stavrou, A., H. Sedding and J. Penman, 200l. Current monitoring for detecting inter-turn short circuits in induction motors. IEEE Trans. Energy Convers., 16: 32-37.

11:  Penman, J. and C.M. Yin, 1994. Feasibility of using unsupervised learning, neural networks for the condition monitoring of electrical machines. IEE Proc. Elect. Power Appl., 41: 317-322.

©  2021 Science Alert. All Rights Reserved