Subscribe Now Subscribe Today
Research Article
 

The P-version Finite Element Method Using Bezier-Bernstein Functions for Frames, Shells and Solids



Nadir Boumechra and Djamel Eddine Kerdal
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

In this study Bézier functions have used as displacement functions for frames, shells and solids. These polynomial shape functions have many mathematic and numerical advantages. The frame, shell and solid finite elements formed by Bézier functions are developed in p-version finite element method as non-discrete field. The Bézier parameterization properties treat more easily the geometrical boundary conditions or elements connection. The stiffness matrix, mass matrix, stability matrix and load vector of an isoparametric element can be related to the physical coordinates. The conditioning of the stiffness matrix for a frame element and the stiffness matrix forms of connected elements are presented. The numerical results converge to the exact solutions in a faster rate than the usual finite elements using the same number of degrees of liberty. A number of examples are given for demonstration.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Nadir Boumechra and Djamel Eddine Kerdal , 2006. The P-version Finite Element Method Using Bezier-Bernstein Functions for Frames, Shells and Solids. Journal of Applied Sciences, 6: 2334-2357.

DOI: 10.3923/jas.2006.2334.2357

URL: https://scialert.net/abstract/?doi=jas.2006.2334.2357

REFERENCES
1:  Antes, H., 1974. Bicubic fundamental splines in plate bending. Int. J. Numerical Meth. Eng., 8: 503-511.
CrossRef  |  Direct Link  |  

2:  Bardell, N.S., 1992. The free vibration of skew plates using the hierarchical finite element method. Comput. Struct., 45: 841-874.
Direct Link  |  

3:  Barth, W. and W. Stuzlinger, 1993. Efficient ray tracing for Bezier and B-spline surfaces. Comput. Graphics, 17: 423-430.

4:  Bulson, P.S., 1970. The Stability of Flat Plates. Chatto and Windus, London.

5:  Cheung, Y.K. and M.S. Cheung, 1971. Flexural vibration of rectangular and other polygonal plates. J. Eng. Mech. Div., 97: 391-411.
Direct Link  |  

6:  Fan, S.C. and Y.K. Cheung, 1984. Flexural free vibration of rectangular plates with complex support conditions. J. Sound Vib., 93: 81-94.
CrossRef  |  Direct Link  |  

7:  Farin, G., 1997. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. 4th Edn., Academic Press, London.

8:  Farouki, R.T., 1991. On the stability of transformation between power and Bernstein polynomial forms. Comput. Aided Geometric Des., 8: 29-36.
CrossRef  |  Direct Link  |  

9:  Fujii, F., 1981. Discrete and non-discrete mixed methods for plate bending analysis. Int. J. Numerical Meth. Eng., 17: 1843-1859.
CrossRef  |  Direct Link  |  

10:  Hermann, T., 1996. On the stability of polynomial transformations between Taylor, Bezier and Hermite forms. Numerical Algorithms, 13: 307-320.

11:  Kagan, P., A. Fischer and P.Z. Bar-Yoseph, 1998. New B-spline finite element approach for geometrical design and mechanical analysis. Int. J. Numerical Meth. Eng., 41: 435-458.

12:  Lau, S.C.W. and G.J. Hancock, 1986. Buckling of thin flat-walled structures by a spline finite strip method. Thin-Walled Struct., 4: 269-294.

13:  Leissa, A.W., 1973. The free vibration of rectangular plates. J. Sound Vibr., 31: 257-293.
CrossRef  |  

14:  Leung, A.Y.T. and F.T.K. Au, 1990. Spline finite elements for beam and plate. Comput. Struct., 37: 717-729.

15:  Liew, K.M., C.M. Wang, Y. Xiang and S. Kitipornchai, 1998. Vibration of Mindlin Plates-Programming the p-Version Ritz Method. Elsevier, New York.

16:  Peano, A.G., 1975. Hiearchies of conforming finite elements. D.Sc. Thesis, Sever Institute of Technology, Washington University, St. Louis, MO.

17:  Warburton, G.B., 1954. The vibration of rectangular plates. Proc. Inst. Mech. Eng., 168: 371-384.

©  2021 Science Alert. All Rights Reserved