Subscribe Now Subscribe Today
Research Article
 

Principal Ideal Rings



Ahmet Goksel Agargun
 
ABSTRACT

In this paper we continue to extend ring concepts. Here we define principal ideal rings for commutative rings (not necessarily with identity) and prove that this definition is equivalent to the usual definition in the case of a ring with identity. Then we generalize some results for principal ideal rings. We study direct sums, direct summands and quotient rings. We show that every Euclidean ring is a principal ideal ring.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Ahmet Goksel Agargun , 2003. Principal Ideal Rings. Journal of Applied Sciences, 3: 71-75.

DOI: 10.3923/jas.2003.71.75

URL: https://scialert.net/abstract/?doi=jas.2003.71.75

REFERENCES
Agargum, A.G. and B.A. Ersoy, 2000. About euclidean ring. YTU Dergisi, pp: 36-44.

Agargum, A.G., 1997. On euclidean rings proyecciones. Revista Matematica, 16: 23-36.

Agargun, A.G. and C.R. Fletcher, 1995. Euclidean rings. Turk. J. Math., 19: 291-299.

Amano, K., 1985. A note on euclidean ring. Bull. Fac. Gen. Gifu Univ., No. 20, pp: 13-15.

Fletcher, C.R., 1971. Euclidean rings. J. Lond. Math. Soc., 2: 79-82.

Hibolt, J.J., 1975. Des anneaus euclidines don`t le plus petit algorithme n`est pas valeurs finies. Comptes Rendues, 281: 411-414.

Hibolt, J.J., 1977. Correction Une note sur les anneaux euclidiens. Comptes Rendues, 284: 847-847.

Hungerford, T.W., 1974. Algebra, Graduate Texts in Mathematics. Springer Verlag, New York.

Kanemitsu, M. and K. Yoshida, 1986. Euclidean rings. Bull. Fac. Sci., Ibaraki Univ. Math., No. 18.

Motzkin, T., 1949. The euclidean algorithm. Bull. Am. Math. Soc., 55: 1142-1146.

Nagata, M., 1978. On euclidean algorithm. Tata Inst. Fund. Res. Stud. Math., 8: 175-186.

Nagata, M., 1985. Some remarks on euclid rings. J. Math. Kyoto Univ., 25: 421-422.

Nagata, M., 1987. On the definition of euclidean ring. Adv. Stud. Pure Math., 11: 167-171.

Samuel, P., 1971. About euclidean rings. J. Algebra, 19: 282-301.

©  2019 Science Alert. All Rights Reserved