Subscribe Now Subscribe Today
Research Article
 

Anisotropy in the Ray Tracing with the Emphasis on Hexagonal Symmetry (TIV)



I.A. Mohammed and Wang Jia Ying
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

For ray tracing purposes, the difference between the phase and group velocities is clarified in order to derive numerically the change in ray velocity due to anisotropy. The simplest anisotropy case of broad geophysical applicability is the transverse isotropy or hexagonal symmetry. The main notations introduced by Auld, 1990 to describe the transverse isotropy of vertical symmetry axis (TIV) have been used.

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

I.A. Mohammed and Wang Jia Ying , 2003. Anisotropy in the Ray Tracing with the Emphasis on Hexagonal Symmetry (TIV). Journal of Applied Sciences, 3: 537-543.

DOI: 10.3923/jas.2003.537.543

URL: https://scialert.net/abstract/?doi=jas.2003.537.543

REFERENCES

1:  Alkhalifah, T. and I. Tsvankin, 1995. Velocity analysis for transversely isotropic media. Geophysics, 60: 1550-1566.

2:  Crampin, S., 1989. Suggestions for a consistent terminology for seismic anisotropy. Geophys. Prospect., 37: 753-770.

3:  Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.

4:  Winterstien, D.F., 1990. Velocity anisotropy terminology for geophysics. Geophysics, 55: 1070-1088.

5:  Aki, K. and P.G. Richards, 1980. Quantitative Seismology theory and Methods. Vol. 1, W.N. Freeman and Co., UK

6:  Auld, B.A., 1990. Acoustic Fields and Waves in Solids Report. Krieger Publishing Co., UK

©  2021 Science Alert. All Rights Reserved