Subscribe Now Subscribe Today
Research Article

Performance of Order Selection Criteria for Short Time Series

Zazli Chik
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

The order of fitted time series models is unknown and constitutes, in effect, additional unknown parameters for which suitable values have to be estimated from the observed data. The approached pioneered by Akaike and Parzen involving the use of an order selection criterion provides a remarkable breakthrough which transforms the order selection problem from one of hypothesis testing to that of estimation. Different authors use different methods of determining the order of their fitted short time series models. Various order selection criteria will be used in a simulation study on fitted short time series models and the performance of each of the order selection criteria in estimating the correct order are investigated.

Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

Zazli Chik , 2002. Performance of Order Selection Criteria for Short Time Series. Journal of Applied Sciences, 2: 783-788.

DOI: 10.3923/jas.2002.783.788


1:  Akaike, H., 1969. Fitting autoregressive models for prediction. Ann. Inst. Stat. Math., 21: 243-247.
CrossRef  |  Direct Link  |  

2:  Akaike, H., 1970. Statistical predictor identification. Ann. Inst. Stat. Math., 22: 203-217.
Direct Link  |  

3:  Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control, 19: 716-723.
CrossRef  |  Direct Link  |  

4:  Akaike, H., 1979. A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika, 66: 237-242.
CrossRef  |  

5:  Bhansali, R.J., 1988. Consistent order determination for processes with infinite variance. J. R. Stat. Soc.. Ser. B, 50: 46-60.
Direct Link  |  

6:  Bhansali, R.J., 1993. Order Selection for Linear Time Series Models: A Review. In: Developments in Time Series Analysis, Rao, T.S. (Ed.). Chapman and Hall, London.

7:  Coates, D.S. and P.J. Diggle, 1986. Tests for comparing two estimated spectral densities. J. Time Ser. Anal., 7: 7-20.
Direct Link  |  

8:  Hannan, E.J. and B.G. Quinn, 1979. The determination of the order of an autoregression. J. R. Stat. Soc. Ser. B: (Methodol.), 41: 190-195.
Direct Link  |  

9:  Hurvich, C.M. and C.L. Tsai, 1989. Regression and time series model selection in small samples. Biometrika, 76: 297-307.
CrossRef  |  

10:  Hurvich, C.M. and C.L. Tsai, 1993. A corrected akaike information criterion for vector autoregressive model selection. J. Time Ser. Anal., 14: 271-279.
CrossRef  |  

11:  Jenkins, G.M. and D.G. Watts, 1968. Spectral Analysis and its Application. Emerson-Adams Press, Boca Raton, FL., USA., pp: 525.

12:  Kane, R.P. and N.B. Trivedi, 1991. Spectral analysis of annual sunspot series: An update. J. Pure Applied Geophys., 135: 463-474.
CrossRef  |  

13:  Koreisha, S.G. and T. Pukkila, 1993. Determining the order of a vector autoregression when the number of component series is large. J. Time Ser. Anal., 14: 47-69.
CrossRef  |  

14:  Martin, R.D., 1980. Robust Estimation of Autoregressive Models. In: Directions in Time Series, Brillinger, D.R. and G.C. Tiao (Eds.). Institute of Mathematics and Statististics, Helsinki, Finland.

15:  Newton, H.J. and M. Pagano, 1984. Simultaneous confidence bands for autoregressive spectra. Biometrika, 71: 197-202.
CrossRef  |  

16:  Paparoditis, E. and B. Streitberg, 1991. Order identification statistics in stationary autoregressive moving-average models:vector autocorrelations and the bootstrap. J. Time Ser. Anal., 13: 415-434.
CrossRef  |  

17:  Parzen, E., 1969. Multiple Time Series Modelling. In: Multivariate Analysis II, Krishnaiah, P.R. (Ed.). Academic Press, New York.

18:  Parzen, E., 1974. Some recent advances in time series modeling. IEEE Trans. Automat. Control, 19: 723-730.
Direct Link  |  

19:  Priestley, M.B., 1981. Spectral Analysis and Time Series. 1st Edn., Academic Press, London, ISBN-10: 0125649010, pp: 653.

20:  Schwarz, G., 1978. Estimating the dimension of a model. Ann. Stat., 6: 461-464.
Direct Link  |  

21:  Shibata, R., 1976. Selection of the order of an autoregressive model by Akaike's information criterion. Biometrika, 63: 117-126.
CrossRef  |  

22:  Stoica, P., 1990. Performance evaluation of some methods for off-line detection of changes in autoregression signals. Signal Proc., 19: 301-310.
Direct Link  |  

23:  Swanepoel, J.W.H. and J.W.J. van Wyk, 1986. The bootstrap applied to power spectral density function estimation. Biometrika, 73: 135-141.
CrossRef  |  

24:  Whittle, P., 1963. Prediction and Regulation. English Unversity Press, London.

©  2021 Science Alert. All Rights Reserved