Subscribe Now Subscribe Today
Research Article
 

New Intelligent Tools to Understand Seed Development and Possible Implications to Molecular Farming



Hilde-Gunn Opsahl-Ferstad
 
ABSTRACT

Understanding the events controlling endosperm development and it’s genetic regulation may give new possibilities for molecular farming, functional foods and fish feed. The cereal endosperm represents the worlds major source for food, feed and industrial raw material. When fully developed, the endosperm is a simple plant system consisting of four major cell types, the starchy endosperm, the aleurone layer, the transfer cells, and cells of the embryo surrounding region. Our work in maize, rice and barley, is complemented with studies in Arabidopsis, with increasing opportunities with comparative genetics with the genome of Arabidopisis sequenced and rice to come. An understanding of the mechanisms underlying endosperm development in general and cell fate specification in particular, is expected to facilitate alterations in grain quality as well as quantity. Results from reverse approaches to identify regulatory control elements directing preferential endosperm expression in transgenic maize, rice and barley for different promoter regions (LTP1, LTP2, B22E and AGPase) will be discussed. When genes controlling cell identity are identified through mutant studies, genetic screens and transgene studies underway, this knowledge can be used to generate cereals to meet special needs.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Hilde-Gunn Opsahl-Ferstad , 2002. New Intelligent Tools to Understand Seed Development and Possible Implications to Molecular Farming. Journal of Applied Sciences, 2: 39-43.

DOI: 10.3923/jas.2002.39.43

URL: https://scialert.net/abstract/?doi=jas.2002.39.43

REFERENCES
Aalen, R.B., H.G. Opsahl, C. Linnestad and O.A. Olsen, 1994. Transcripts ending an oleosin and a dormancy related protein are present in both the aleurone layer and the embryo of developing barley seeds. Plant J., 5: 385-396.

Bancroft, I., 2001. Duplicate and diverge: The evolution of plant microstructure. Trends Genet., 17: 89-93.
Direct Link  |  

Becraft, P.W. and Y.A. Crabb, 2000. Positional cues specify and maintain aleurone cell fate in maize edosperm developemnt. Development, 127: 4039-4048.

Becraft, P.W., P.S. Stinard and D.R. McCarty, 1996. Crinkly4: A tnfr-like receptor kinase involved in maize epidermal differentiation. Science, 273: 1406-1409.
Direct Link  |  

Becraft, P.W., R.C. Brown, B.E. Lemmon, O.A. Olsen and H.G.O. Ferstad, 2000. Development Biology of Endosperm Development. Kluwer Academic Publisher, Dordrecht, The Netherlands.

Benefy, P. and N.H. CHua, 1989. Regulated genes in transgenic plants. Science, 244: 174-181.
Direct Link  |  

Blanchette, M. and S. Sonha, 2001. Separating real motifs rom their artifacts. Bioinformatics, 17: 30-38.
Direct Link  |  

Bonello, J.F., H.G.O. Ferstad, P. Perez, C. Dumas and P.M. Rogowsky, 2000. Esr genes show different levels of expression in the same region of maize endosperm. Gene, 246: 219-227.
CrossRef  |  Direct Link  |  

Bosnes, M. and O.A. Olsen, 1992. The rate of nuclear gene transcription in barley endosperm syncytia increases sixfold before cell-wall formation. Planta, 186: 376-383.
CrossRef  |  Direct Link  |  

Calzada, J.P.V., R. Baskar and U. Grossniklaus, 2000. Delayed activation of the paternal genome during seed development. Nature, 404: 91-94.
Direct Link  |  

Cazares, B.X., Y. Xiang, R.R. Medrano, H.L. Wang and J. Monzer et al., 1999. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science, 283: 94-98.
Direct Link  |  

Chiang, D.Y. P.O. Brown and M.B. Elsen, 2001. Visualization assoclations between genome sequences and gene expression profiles. Bioinformatics, 17: 49-55.

Clark, S.M., M.P. Running and E.M. Meyerowitz, 1995. CLAVATA3 is a specific regulator of shoot and floralmeristem development affecting the same process as CLAVATA1. Development, 121: 2057-2067.
Direct Link  |  

Coak, J.M. and S. McCormick, 2001. A large family of genes that share homology with CLACATA3. Plant Phys., 126: 939-942.
Direct Link  |  

Daniell, H., S. Streatfield and K. Wycoff, 2001. Medical molecular farming: Production of antibidies biopharmaceuticals and edible vaccines in plants. Trends Plant Sci., 6: 219-226.
Direct Link  |  

Doan, D.N., C. Linnestad and O.A. Olsen, 1996. Isolation of molecular markers from the barley endosperm coenocyte and the surrounding nucellus cell layers. Plant Mol. Biol., 31: 877-886.
CrossRef  |  

Doan, D.N., H. Rudi and O.A. Olsen, 1999. The allosterically unregulated isoform of ADP-glucose pyrophosphorylase from barley endosperm is the most likely source of ADP-glucose incorporated into endosperm starch. Plant Physiol., 121: 965-975.
Direct Link  |  

Elmert, K., C. Luo, A. Dejardin, P. Villand, T. Thorbjornsen and L.A. Kleczkowski, 1997. Molecular cloning and expression of the large subunit of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves. Gene, 189: 79-82.
Direct Link  |  

Ferstad, H.G.O. and H. Rudi, 2000. Endosperm development, gene topics in plant biology. Curr. Topics Plant Biol., 2: 83-92.

Ferstad, H.G.O., E. Le Deunff, C. Dumas and P.M. Rogowsky, 1997. ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J., 12: 235-246.
Direct Link  |  

Fletcher, J.C., U. Brand, M.P. Running, R. Simon and E.M. Meyerowitz, 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283: 1911-1914.
Direct Link  |  

Graveley, B.R., 2001. Alternative splicing: Increasing diversity in the proteomic world. Trends Genet., 17: 100-107.
Direct Link  |  

Hannah, L.C. and O.E. Jr. Nelson, 1976. Charaterization of ADP-glucose pyrophosphyorylase from shrunken- 2 and brittle-2 mutants of maize. Biochem. Gent., 14: 547-560.

Hoshikawa, K., 1993. Anthesis, Fertilization and Development of Caryopsis. Food and Agriculture Policy Research Center, Nobunkyo, Tokyo.

Hueros, G., J. Royo, M. Maitz, F. Salamini and R.D. Thompson, 1999. Evidence for factors regulating transfer cell-specific expression in maize endosperm. Plant Mol. Biol., 41: 403-414.
Direct Link  |  

Hueros, G., S. Varotto, F. Salamini and R. Thomson, 1995. Molecular characterizatin of BET1, a gene expressed in the endosperm transfer cells of maize. Plant Physiol., 99: 1626-1634.

Hylton, C. and A.M. Smith, 1992. The rb mutation of peas causes structural and regulatory changes in ADP-glucose pyrophosphorylase from developigembryos. Plant Physiol., 99: 1626-1634.

Ingram, G.C., J.L. Magnard, P. Vergne, C. Dumas and P.M. Rogowsky, 1999. ZmOCL1, an HDGL2 family homeobox gene, is expressed in the outer cell layer throughout maize development. Plant Mol. Biol., 40: 343-354.
Direct Link  |  

Jones, L., A.J. Hamilton, O. Voinnet, C.L. Thomas, A.J. Maule and D.C. Baulcombe, 1999. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell, 11: 2291-2301.
Direct Link  |  

Kalla, R., K. Shimamoto, R. Potter, P.S. Nielsen, C. Linnestad and O.A. Olsen, 1994. The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J., 6: 849-860.
Direct Link  |  

Kilian, A., A. Kleinhofs, P. Villand, T. Thorbjornsen, O.A. Olsen and L.A. Kleczkowski, 1994. Mapping of the ADP-glucose pyrophosphorylase genes in barley. Theor. Applied Genet., 87: 869-871.
Direct Link  |  

Kleczkowski, L.A., P. Villand, E. Luthi, O.A. Olsen and J. Preiss, 1993. Insensitivity of barley endosperm ADP-glucose pyrophosphorylase to 3-phosphoglycerate and orthosphate regulation. Plant Physiol., 101: 179-186.

Kleczkowski, L.A., P. Villand, J. Preiss and O.A. Olsen, 1993. Kinetic mechanism and regulation of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves. J. Biol. Chem., 268: 6228-6233.
Direct Link  |  

Kumar, S. and M. Fladung, 2001. Controlling transgene integration in plants. Trends Plant Sci., 6: 155-159.
CrossRef  |  Direct Link  |  

Lin, T.P., T. Caspar, C.R. Sommerville and J. Preissm, 1988. A starch deficient mutant of arabidopsis thaliana with low adpglucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol., 88: 1175-1181.
Direct Link  |  

Loriga, C.B., A.C. Carmona, M. Bauch, S. Hodge and P. Doerner et al., 2001. Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell, 13: 495-509.
Direct Link  |  

Messing, J., 2001. Do plants have more gene thsn humans?. Trends Plant Sci., 6: 195-196.
CrossRef  |  Direct Link  |  

Morell, M.K., M. Bloom, V. Knowles and J. Preiss, 1987. Subunit structure of spinach leaf ADP glucose pyrophosphorylase. Plant Physiol., 85: 182-187.
PubMed  |  

Muller-Rober, B., U. Sonnewald and L. Willmitzer, 1992. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J., 11: 1229-1238.
PubMed  |  

Ohler, U. and H. Niemann, 2001. Identification and analysis of eukaryotic promoters: Recent computational approches. Trends Genet., 17: 56-60.
CrossRef  |  Direct Link  |  

Ohler, U., H. Niemann, G. Loao and G.M. Rubin, 2001. Joint modeling of dna sequence and physical properties to improve eukaryotic promoter recognition. Bioinformatics, 17: 199-206.
Direct Link  |  

Okita, T.W., P.A. Nakata, J.M. Anderson, J. Sowokinos, M. Morell and J. Preiss, 1990. The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiol., 93: 785-790.
Direct Link  |  

Olsen, O.A., 2001. Endosperm development: Cellularization and cell fate specification. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52: 233-267.
PubMed  |  

Olsen, O.A., B.E. Lemmon and R.C. Brown, 1998. A model for aleurone cell development. Trends Plant Sci., 3: 168-169.
CrossRef  |  Direct Link  |  

Olsen, O.A., C. Linnestad and S.E. Nichols, 1999. Developmental biology of the cereal endosperm. Trends Plant Sci., 4: 253-257.
Direct Link  |  

Per, V., O.A. Olsen, A. Kilian and L.A. Kleczkowski, 1999. ADP-glucose pyrophosphorylase large subunit cDNA from barley endosperm. Plant Physiol., 100: 1617-1618.

Selinger, D.A., D. Lisch and V.L. Chandler, 1998. The maize regulatory gene B-Peru contains a DNA rearrangement that specifies tissue-specific expression through both positive and negative promoter elements. Genetics, 149: 1125-1138.
Direct Link  |  

Skriver, K., R. Leah, F.M. Uri, F.L. Olsen and J. Mundy, 1992. Structure and expression of the barley lipid transfer protein gene Ltp1. Plant Mol. Biol., 18: 585-589.
Direct Link  |  

Spillane, C., J.P.V. Calzada and U. Grossniklasus, 2001. ApO2001 A sexy apromixer in como meeting report. Plant Cell., 13: 1480-1491.

Strauss, E., 1999. RNA molecules may carry long-distance signals in plants. Science, 283: 12-13.
Direct Link  |  

Thompson, R.D., 2000. Turning fielfs in to grains. Nature, 408: 39-41.
Direct Link  |  

Thorbjornsen, T., P. Villand, L.A. Kleczkowski and O.A. Olsen, 1996. A single gene encodes two different transcripts for the ADP-glucose. Biomed. J., 313: 149-154.
Direct Link  |  

Thorbjornsen, T., P. Villand, V. Ramstad, H. Rudi, L. Kleczkwski, O.A. Olsen and O.F. Hg, 2000. Necleotide sequence of the ADP-glucose pyrophosphorylase promoter (Accession No. AJ239130) of barley (Hordeum vulgare L.), A major controlling gene in endosoerm starch synthesis. Plant Phys., 122: 1457-1457.

Torii, K.U. and S.E. Clark, 2000. Receptor-like kinases in plant development. Adv. Bot. Res. Inc. Adv. Plant Pathol., 32: 225-267.

Trotochaud, A., S. Jeong and S. Clark, 2000. CLAVATA3, amultimeric llganf for the CLAVATA1 receptor-kinase. Science, 289: 613-617.

Weschke, W., R. Panitz, N. Sauer, Q. Wang, B. Neubohn, H. Weber and U. Wobus, 2000. Sucrose transport into barley seeds: Molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J., 21: 455-467.
Direct Link  |  

Wu, C., H. Washida, Y. Onodera, K. Harada and F. Kakaiwa, 2000. Qantitaive nature of the prolamin-box, ACGT and ACA motifs in a rice glutelin gene promoter: Minimal cis-elements requirments for endosperm-specific gene expression. Plant J., 23: 415-421.
Direct Link  |  

Zhang, J. and T. Madden, 1997. Power Blast: A new network BLAST application for interactive or automated sequence analysis and annotation. Genome Res., 7: 649-656.
Direct Link  |  

©  2019 Science Alert. All Rights Reserved