ABSTRACT
Understanding the events controlling endosperm development and it’s genetic regulation may give new possibilities for molecular farming, functional foods and fish feed. The cereal endosperm represents the worlds major source for food, feed and industrial raw material. When fully developed, the endosperm is a simple plant system consisting of four major cell types, the starchy endosperm, the aleurone layer, the transfer cells, and cells of the embryo surrounding region. Our work in maize, rice and barley, is complemented with studies in Arabidopsis, with increasing opportunities with comparative genetics with the genome of Arabidopisis sequenced and rice to come. An understanding of the mechanisms underlying endosperm development in general and cell fate specification in particular, is expected to facilitate alterations in grain quality as well as quantity. Results from reverse approaches to identify regulatory control elements directing preferential endosperm expression in transgenic maize, rice and barley for different promoter regions (LTP1, LTP2, B22E and AGPase) will be discussed. When genes controlling cell identity are identified through mutant studies, genetic screens and transgene studies underway, this knowledge can be used to generate cereals to meet special needs.
PDF References Citation
How to cite this article
Hilde-Gunn Opsahl-Ferstad, 2002. New Intelligent Tools to Understand Seed Development and Possible Implications to Molecular Farming. Journal of Applied Sciences, 2: 39-43.
DOI: 10.3923/jas.2002.39.43
URL: https://scialert.net/abstract/?doi=jas.2002.39.43
DOI: 10.3923/jas.2002.39.43
URL: https://scialert.net/abstract/?doi=jas.2002.39.43
REFERENCES
- Bancroft, I., 2001. Duplicate and diverge: The evolution of plant microstructure. Trends Genet., 17: 89-93.
Direct Link - Becraft, P.W., P.S. Stinard and D.R. McCarty, 1996. Crinkly4: A tnfr-like receptor kinase involved in maize epidermal differentiation. Science, 273: 1406-1409.
Direct Link - Benefy, P. and N.H. CHua, 1989. Regulated genes in transgenic plants. Science, 244: 174-181.
Direct Link - Blanchette, M. and S. Sonha, 2001. Separating real motifs rom their artifacts. Bioinformatics, 17: 30-38.
Direct Link - Loriga, C.B., A.C. Carmona, M. Bauch, S. Hodge and P. Doerner et al., 2001. Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell, 13: 495-509.
Direct Link - Bonello, J.F., H.G.O. Ferstad, P. Perez, C. Dumas and P.M. Rogowsky, 2000. Esr genes show different levels of expression in the same region of maize endosperm. Gene, 246: 219-227.
CrossRefDirect Link - Bosnes, M. and O.A. Olsen, 1992. The rate of nuclear gene transcription in barley endosperm syncytia increases sixfold before cell-wall formation. Planta, 186: 376-383.
CrossRefDirect Link - Clark, S.M., M.P. Running and E.M. Meyerowitz, 1995. CLAVATA3 is a specific regulator of shoot and floralmeristem development affecting the same process as CLAVATA1. Development, 121: 2057-2067.
Direct Link - Coak, J.M. and S. McCormick, 2001. A large family of genes that share homology with CLACATA3. Plant Phys., 126: 939-942.
Direct Link - Daniell, H., S.J. Streatfield and K. Wycoff, 2001. Medical molecular farming: Production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci., 6: 219-226.
CrossRefPubMedDirect Link - Doan, D.N., C. Linnestad and O.A. Olsen, 1996. Isolation of molecular markers from the barley endosperm coenocyte and the surrounding nucellus cell layers. Plant Mol. Biol., 31: 877-886.
CrossRef - Doan, D.N., H. Rudi and O.A. Olsen, 1999. The allosterically unregulated isoform of ADP-glucose pyrophosphorylase from barley endosperm is the most likely source of ADP-glucose incorporated into endosperm starch. Plant Physiol., 121: 965-975.
Direct Link - Elmert, K., C. Luo, A. Dejardin, P. Villand, T. Thorbjornsen and L.A. Kleczkowski, 1997. Molecular cloning and expression of the large subunit of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves. Gene, 189: 79-82.
Direct Link - Fletcher, J.C., U. Brand, M.P. Running, R. Simon and E.M. Meyerowitz, 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283: 1911-1914.
Direct Link - Graveley, B.R., 2001. Alternative splicing: Increasing diversity in the proteomic world. Trends Genet., 17: 100-107.
Direct Link - Hueros, G., J. Royo, M. Maitz, F. Salamini and R.D. Thompson, 1999. Evidence for factors regulating transfer cell-specific expression in maize endosperm. Plant Mol. Biol., 41: 403-414.
Direct Link - Ingram, G.C., J.L. Magnard, P. Vergne, C. Dumas and P.M. Rogowsky, 1999. ZmOCL1, an HDGL2 family homeobox gene, is expressed in the outer cell layer throughout maize development. Plant Mol. Biol., 40: 343-354.
Direct Link - Jones, L., A.J. Hamilton, O. Voinnet, C.L. Thomas, A.J. Maule and D.C. Baulcombe, 1999. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell, 11: 2291-2301.
Direct Link - Kalla, R., K. Shimamoto, R. Potter, P.S. Nielsen, C. Linnestad and O.A. Olsen, 1994. The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J., 6: 849-860.
Direct Link - Kilian, A., A. Kleinhofs, P. Villand, T. Thorbjornsen, O.A. Olsen and L.A. Kleczkowski, 1994. Mapping of the ADP-glucose pyrophosphorylase genes in barley. Theor. Applied Genet., 87: 869-871.
Direct Link - Kleczkowski, L.A., P. Villand, J. Preiss and O.A. Olsen, 1993. Kinetic mechanism and regulation of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves. J. Biol. Chem., 268: 6228-6233.
Direct Link - Kumar, S. and M. Fladung, 2001. Controlling transgene integration in plants. Trends Plant Sci., 6: 155-159.
CrossRefDirect Link - Lin, T.P., T. Caspar, C.R. Sommerville and J. Preissm, 1988. A starch deficient mutant of arabidopsis thaliana with low adpglucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol., 88: 1175-1181.
Direct Link - Messing, J., 2001. Do plants have more gene thsn humans?. Trends Plant Sci., 6: 195-196.
CrossRefDirect Link - Morell, M.K., M. Bloom, V. Knowles and J. Preiss, 1987. Subunit structure of spinach leaf ADP glucose pyrophosphorylase. Plant Physiol., 85: 182-187.
PubMed - Muller-Rober, B., U. Sonnewald and L. Willmitzer, 1992. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J., 11: 1229-1238.
PubMed - Ohler, U. and H. Niemann, 2001. Identification and analysis of eukaryotic promoters: Recent computational approches. Trends Genet., 17: 56-60.
CrossRefDirect Link - Ohler, U., H. Niemann, G. Loao and G.M. Rubin, 2001. Joint modeling of dna sequence and physical properties to improve eukaryotic promoter recognition. Bioinformatics, 17: 199-206.
Direct Link - Okita, T.W., P.A. Nakata, J.M. Anderson, J. Sowokinos, M. Morell and J. Preiss, 1990. The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiol., 93: 785-790.
Direct Link - Olsen, O.A., 2001. Endosperm development: Cellularization and cell fate specification. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52: 233-267.
PubMed - Olsen, O.A., B.E. Lemmon and R.C. Brown, 1998. A model for aleurone cell development. Trends Plant Sci., 3: 168-169.
CrossRefDirect Link - Olsen, O.A., C. Linnestad and S.E. Nichols, 1999. Developmental biology of the cereal endosperm. Trends Plant Sci., 4: 253-257.
Direct Link - Ferstad, H.G.O., E. Le Deunff, C. Dumas and P.M. Rogowsky, 1997. ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J., 12: 235-246.
Direct Link - Selinger, D.A., D. Lisch and V.L. Chandler, 1998. The maize regulatory gene B-Peru contains a DNA rearrangement that specifies tissue-specific expression through both positive and negative promoter elements. Genetics, 149: 1125-1138.
Direct Link - Skriver, K., R. Leah, F.M. Uri, F.L. Olsen and J. Mundy, 1992. Structure and expression of the barley lipid transfer protein gene Ltp1. Plant Mol. Biol., 18: 585-589.
Direct Link - Strauss, E., 1999. RNA molecules may carry long-distance signals in plants. Science, 283: 12-13.
Direct Link - Thorbjornsen, T., P. Villand, L.A. Kleczkowski and O.A. Olsen, 1996. A single gene encodes two different transcripts for the ADP-glucose. Biomed. J., 313: 149-154.
Direct Link - Thorbjornsen, T., P. Villand, V. Ramstad, H. Rudi, L. Kleczkwski, O.A. Olsen and O.F. Hg, 2000. Necleotide sequence of the ADP-glucose pyrophosphorylase promoter (Accession No. AJ239130) of barley (Hordeum vulgare L.), A major controlling gene in endosoerm starch synthesis. Plant Phys., 122: 1457-1457.
- Calzada, J.P.V., R. Baskar and U. Grossniklaus, 2000. Delayed activation of the paternal genome during seed development. Nature, 404: 91-94.
Direct Link - Weschke, W., R. Panitz, N. Sauer, Q. Wang, B. Neubohn, H. Weber and U. Wobus, 2000. Sucrose transport into barley seeds: Molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J., 21: 455-467.
Direct Link - Wu, C., H. Washida, Y. Onodera, K. Harada and F. Kakaiwa, 2000. Qantitaive nature of the prolamin-box, ACGT and ACA motifs in a rice glutelin gene promoter: Minimal cis-elements requirments for endosperm-specific gene expression. Plant J., 23: 415-421.
Direct Link - Cazares, B.X., Y. Xiang, R.R. Medrano, H.L. Wang and J. Monzer et al., 1999. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science, 283: 94-98.
Direct Link - Zhang, J. and T. Madden, 1997. Power Blast: A new network BLAST application for interactive or automated sequence analysis and annotation. Genome Res., 7: 649-656.
Direct Link