Subscribe Now Subscribe Today
Research Article
 

Convergence of Pseudospectral Method for Solving Navier-Stokes Equations



Abdur Rashid
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

In this paper a new kind of Pseudospectral scheme is constructed for the Unsteady Navier-Stokes equations. This method easily deal with nonlinear terms and saves computational time. The generalized stability of the scheme is analyzed and the convergence is proved. Numerical results are presented also.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Abdur Rashid , 2002. Convergence of Pseudospectral Method for Solving Navier-Stokes Equations. Journal of Applied Sciences, 2: 1124-1127.

DOI: 10.3923/jas.2002.1124.1127

URL: https://scialert.net/abstract/?doi=jas.2002.1124.1127

REFERENCES
1:  Guo, B.Y., 1996. Fourier chebyshev spectral method for the two-dimensional navier stokes equation. SIAM Numerical Anal., 33: 360-372.
Direct Link  |  

2:  Canuto, C., M. Hussaini, A. Quarteroni and T. Zang, 1988. Spectral Methods in Fluid Dynamics. Springer, ISBN-10: 0387173714, pp: 557.

3:  Weiming, C. and G. Benyu, 1991. A pseudo-spectral method for solving navier stokes equation. J. Comput. Math., 9: 278-289.

4:  Canuto, C. and A. Quartroni, 1982. Approximation results for orthogonal polynomials in Sobolev space. Math. Comput., 38: 67-86.
Direct Link  |  

5:  Benyu, G., 1985. Spectral method for solving navier stokes equation. Scientia Sinica, 28: 1139-1153.
Direct Link  |  

6:  Ben-Yu, G. and C. Weiming, 1992. A combined spectral-finite element method for solving two-dimensional unsteady navier-stokes equation. J. Comput. Physics., 101: 375-385.
CrossRef  |  Direct Link  |  

7:  Huang, W. and G. Ben-Yu, 1992. The spectral-difference for navier-stokes equation. Math. J., 8: 157-176.

8:  Jing-Yu H. and B.Y. Guo, 1999. Chebyshev pseudospectral finite element mehtods for the three dimensional unsteady navier stokes equation. J. Applied Math. Comput., 104: 123-134.

9:  Jian, L. and G. Ben-Yu, 1995. Fourier-legendre spectral method for the unsteady navier-stokes equation. J. Comput. Math., 13: 144-155.

10:  Rashid, A., C. Weiming and G. Benyu, 1994. Three-level spectral method for fluid with low mach number. J. Applied Math. Comput., 63: 131-149.
CrossRef  |  Direct Link  |  

11:  He, S.N. and C.P. Yang, 1999. Combined legendre spectral finite element method for the two dimensional unsteady Navier Stokes equations. J. Comput. Math., 17: 394-508.

12:  Temam, R., 1977. Navier-stokes Equations: Theory and Numerical Analysis. North-Holland Publ. Co., Amsterdam, The Netherlands.

©  2021 Science Alert. All Rights Reserved