Subscribe Now Subscribe Today
Research Article

Power Study for Empirical Distribution Function Tests for Generalized Pareto Distribution

M. Arshad , M.T. Rasool and M.I. Ahmad
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

For the power study of empirical distribution function tests, the Generalized Pareto distribution is considered. Four empirical distribution function tests i.e., Kolmogorov Smirnov, Cramer Von Mises, Anderson Darling and Modified Anderson Darling tests are compared for Generalized Pareto distribution. In the study four symmetrical and four skewed distributions are used as an alternative. The power comparisons are made using Monte Carlo methods at 5% and 10% significance levels for various sample sizes.

Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

M. Arshad , M.T. Rasool and M.I. Ahmad , 2002. Power Study for Empirical Distribution Function Tests for Generalized Pareto Distribution. Journal of Applied Sciences, 2: 1119-1122.

DOI: 10.3923/jas.2002.1119.1122


1:  Anderson, T.W. and D.A. Darling, 1954. A test of goodness of fit. J. Am. Stat. Assoc., 49: 765-769.
CrossRef  |  

2:  Aigner, D.J. and A.S. Goldberger, 1970. Estimation of pareto`s law from grouped observation. J. Am. Stat. Assoc., 65: 713-727.
CrossRef  |  

3:  Arshad, M., 1994. Empriical distribution function test for generalized pareto distribution and its applications in rainfall intensity estimation. M.Phil Thesis, Department of Math and Stat, University of Agriculture, Faisalabad.

4:  Chowdhury, J.U., J.R. Stedinger and L.H. Lu, 1991. Goodness-of-fit tests for regional generalized extreme value flood distributions. Water Resour. Res., 27: 1765-1776.
CrossRef  |  Direct Link  |  

5:  D`Agostino, R.B. and M.A. Stephens, 1986. Goodness of Fit Techniques. Marcel Dekker Inc., New York, pp: 560.

6:  Dahiya, R.C. and J. Gurland, 1973. How Many Classes in the Techniques. Marcel Dekker, New York.

7:  Greenwood, J.A., J.M. Landwehr, N.C. Matalas and J.R. Walls, 1979. Probability weighted moments: Definition and relation to parameters of several. Resour. Res., 15: 1049-1054.

8:  Hosking, J.R.M. and J.R. Willis, 1987. Parameters and quantile estimators for generalized pareto distribution. Technometrics, 29: 339-349.
CrossRef  |  

9:  Little, R.G., J.T. McClave and W.W. Offen, 1979. Goodness fit tests for the two parameter weibull distribution. Technometeries, 29: 339-349.

10:  Massey, Jr. F.J., 1951. The kolmogorov-smirnov test for goodness of fit. J. Am. Stat. Assoc., 46: 68-78.
Direct Link  |  

11:  Moharram, S.H., A.K. Gasian and P.N. Kaporr, 1993. A comparative study for the estimators of the generalized pareto distribution. J. Hydrol., 150: 169-185.

12:  Sinclair, C.D., B.D. Spurr and M.I. Ahmad, 1990. Modified Anderson darling test. Commun. Stat. Theory Methods, 19: 3677-3686.
CrossRef  |  Direct Link  |  

13:  Stephens, M.A., 1974. EDF statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc., 69: 730-737.

14:  Stephens, M.A., 1976. Asymptotic power of EDF statistic for exponentiality against Gamma and Weibull alternatives. Technical Report No. 263, Department of. Statistics, Stanford University.

15:  Van Montfort, M.A.J. and J.V. Witter, 1985. Testing exponentiality against generalized pareto distribution. J. Hydrol., 78: 305-315.

©  2021 Science Alert. All Rights Reserved