Subscribe Now Subscribe Today
Research Article
 

Mid-Point Euler Method in Pseudospectral Approximation for Burger’s Equation



Abdur Rashid
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

In this paper, a Fourier Pseudospectral Approximation combined with the Midpoint Euler time differencing technique for solving Burger`s equation is proposed. The stability and convergence are investigated. The numerical results are also presented.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Abdur Rashid , 2002. Mid-Point Euler Method in Pseudospectral Approximation for Burger’s Equation. Journal of Applied Sciences, 2: 1007-1010.

DOI: 10.3923/jas.2002.1007.1010

URL: https://scialert.net/abstract/?doi=jas.2002.1007.1010

REFERENCES
1:  Canuto, C., M.Y. Hussaini, A. Quartroni and T.A. Zang, 1987. Spectral Methods in Fluid Dynamics. Springer Verlag, Berlin, Heidelberg.

2:  Gottlieb, D. and S.A. Orszag, 1977. Numerical Analysis of Spectral Methods. Society for Industrial and Applied Mathematics, Philadelphia.

3:  Ben-Yu, G. and M. Heping, 1986. Fourier pseudo spectral method for Burger`s equation. Northeastern Math. J., 2: 383-394.

4:  Ben-Yu, G., 1988. Difference Methods for Partial Differential Equations. Science Press, Beijing.

5:  Kreiss, H.O. and J. Oliger, 1979. Stability of the fourier methods. SIAM J. Numerical Anal., 16: 421-433.

6:  Mady, Y. and A. Quartroni, 1981. Legendre and Chebyshev spectral approximation of Burger`s equation. Math, 37: 321-322.

7:  Ma-Heping, M. and G. Ben-Yu, 1988. The Chebyshev spectral method for Burger`s like equations. J. Comput. Math., 6: 48-53.
Direct Link  |  

8:  He-Ping, M. and G. Ben-Yu, 1986. The fourier pseudo-spectral method with restraint operator for KDV equation. J. Comput. Phys., 65: 120-137.

9:  Rashid, A., 1993. Mid-point euler in fourier spectral method for fluid flow with low mach number. Part I. J. Shanghai Univ. Sci. Technol., 16: 418-426.

10:  Rashid, A., 1993. Mid-point euler in fourier spectral method for fluid flow with low mach number. Part II. J. Shanghai Univ. Sci. Technol., 17: 53-61.

11:  He, S.N. and C.P. Yang, 1999. Combined legendre spectral finite element method for the two dimensional unsteady Navier Stokes equations. J. Comput. Math., 17: 394-508.

©  2021 Science Alert. All Rights Reserved