Subscribe Now Subscribe Today
Research Article
 

Genetic Algorithms in Optimization and Computer Aided Design



Reza Farshadnia
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Developments in computational models of evolutionary processes have led to the realization of powerful, robust and general optimization and adaptive systems collectively called evolutionary algorithms. In this paper, we consider one member of this class of algorithms, the genetic algorithm and describe the features and characteristics that are particularly appropriate for application in control systems engineering. The versatility and robust qualities of the algorithm are considered and a number of application areas described. Some prospespective future directions are also identified.

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Reza Farshadnia , 2001. Genetic Algorithms in Optimization and Computer Aided Design. Journal of Applied Sciences, 1: 289-294.

DOI: 10.3923/jas.2001.289.294

URL: https://scialert.net/abstract/?doi=jas.2001.289.294

REFERENCES

  1. Chipperfield, A.J. and P.J. Fleming, 1994. Parallel Genetic Algorithms, Forthcoming in Handbook of Parallel and Distributed Computing. In: Genetic Algorithm Tools for Control Systems Engineering, Chipperfield, A.J., P.J. Fleming and C.M. Fonseca (Eds.). Plymouth Engineering Design Centre, UK., pp: 128-133


  2. Roberts, A. and G. Wade, 1993. A structured GA for FIR filter design. Proc. Workshop Nat. Algorithms Signal Process., 16: 1-16.


  3. Varsek, A., T. Urbancic and B. Filipic, 1993. Genetic algorithms in controller design and tuning. IEEE Trans. Syst. Man Cybernetics, 23: 1330-1339.
    Direct Link  |  


  4. Porter, B. and A.H. Jones, 1992. Genetic tuning of digital PID controllers. Elect. Lett., 28: 843-844.
    Direct Link  |  


  5. Karr, C.L., 1991. Design of an adaptive fuzzy logic controller using a genetic algorithm. Proceedings of the 4th International Conference Genetic Algorithms, July 1991, San Diego, CA, pp: 450-457


  6. Hwang, C.L. and A.S.M. Masud, 1979. Multiple Objective Decision Making Methods and Applications: A State of the Art Survey. Springer-Verlag, Berlin, Germany, ISBN-13: 9780387091112, Pages: 351


  7. Fonseca, C.M. and P.J. Fleming, 1994. Multiobjective optimal controller design with genetic algorithms. Proc. Int. Conf. Control, 1: 745-749.
    Direct Link  |  


  8. Fonseca, C.M. and P.J. Fleming, 1995. An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput., 3: 1-16.
    CrossRef  |  Direct Link  |  


  9. Kan, C.L., 1992. An adaptive system for process control using genetic algorithms. Proceedings of the International IFAC/IRPIMACS Symposia on Artificial Intelligence in Real-Time Control, (AIRTC'92), The Netherlands, pp: 585-590


  10. Fonseca, C.M, E.M. Mendes, P.J. Fleming and S.A. Billings, 1993. Non-linear model term selection with genetic. IEEE Workshop Nat. Algorithms Signal Process., 1: 27-27.


  11. Lucasius, C.B. and G. Kateman, 1992. Towards solving subset selection problems with the aid of the genetic algorithm. Proceedings of the Parallel Problem Solving from Nature, September 28-30, 1992, Brussels, Belgium, pp: 239-247


  12. Linkens, D.A. and H.O. Nyongesa, 1992. Genetic algorithms for fuzzy control. IEE Colloquium on Genetic Algorithms for Control Systems Engineering Digest No. 106.


  13. Dipankar, D. and R.M. Douglas, 1992. Nonstationary function pptimization using the structured genetic algorithm. Proceedings of the Parallel Problem Solving from Nature, September 28-30, 1992, Brussels, Belgium, pp: 145-154


  14. Goldberg, D.E., 1989. Genetic Algorithm in Search, Optimization and Machine Learning. 1st Edn., Addison-Wesley, Reading, MA, USA


  15. Whitley, D., 1989. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. Proceedings of the 3rd International Conference on Genetic Algorithms, June 4-7, 1989, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA., pp: 116-121
    Direct Link  |  


  16. Iba, H., T. Kurita, H. de Garis and T. Sato, 1993. System identification using structured genetic algorithms. Proceedings of the 5th International Conference on Genetic Algorithms, July 1993, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA., pp: 279-286
    Direct Link  |  


  17. Muhlenbein, H. and D. Schlierkamp-Voosen, 1993. Predictive models for the breeder genetic algorithm. I. Continuous parameter optimization. Evol. Comput., 1: 25-49.
    CrossRef  |  Direct Link  |  


  18. Parmee, I.C. and M.J. Denham, 1994. The integration for adaptive search techniques with current engineering design practice. Proceedings of the 1st International Conference Adaptive Computing in Engineering Design and Conrol, (ICACEDC'94), Plymouth Engineering Design Centre, UK., pp: 1-13


  19. Koza, J.R., 1991. Evolving a computer program to generate random numbers using the genetic programming paradigm. Proceedings of the 4th International Conference on Genetic Algorithms, July 1991, Morgam Kaufmann, La Jolla, CA, pp: 37-44
    Direct Link  |  


  20. Baker, J.E., 1987. Reducing bias and inefficiency in the selection algorithm. Proceedings of the 2nd International Conference on Genetic Algorithms on Genetic Algorithms and their Application, July 1987, Cambridge, Massachusetts, United States, pp: 14-21
    Direct Link  |  


  21. Holland, J.H., 1992. Adaptation in Natural and Artificial Systems. 2nd Edn., MIT Press, Cambridge, MA., USA., ISBN-13: 9780262581110, Pages: 211


  22. Whidborne, J.F., I. Postlethwaite and D.W. Gu, 1994. Robust controller design using H∞ loop-shaping andthe method of inequalities. IEEE Trans. Control Syst. Technol., 2: 455-455.
    CrossRef  |  Direct Link  |  


  23. Richardson, J.T., M.R. Palmer, G. Liepins and M. Hillard, 1989. Some guidelines for genetic algorithms with penalty functions. Proceedings of the 3rd International Conference on Genetic Algorithms, (ICCA'89), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA., pp: 191-197
    Direct Link  |  


  24. Kenneth, D.J., 1980. Adaptive system design: A genetic approach. IEEE Trans. Syst., 10: 566-574.
    CrossRef  |  Direct Link  |  


  25. Krishnakumar, K. and G. Davide, 1992. Control system optimization using genetic algorithms. J. Guidance Control Dyn., 15: 735-740.
    Direct Link  |  


  26. Fogel, L.J., O.J. Alvin and W.M. John, 1996. Artificial Intelligence Through Simulated Evolution. John Wiley and Sons, New York, pp: 170
    Direct Link  |  


  27. Booker, L., 1987. Improving Seardl in Genetic Algorithms in Genetic Algorithm and Simulated Annealing. Morgan Kaufmann, San Mateo, pp: 61-73


  28. Bramlette, M.F. and R. Cusic, 1989. A comparative evaluation of search methods applied to the parametric design of aircraft. Proceedings of the 3rd International Conference on Genetic Algorithms, June 4-7, 1989, George Mason University, United States, pp: 213-218
    Direct Link  |  


  29. Dakev, N.V., J.D. Whidborne and A.J. Chipperfield, 1995. H∞ design of an EMS control system for a maglevvehicle using evolutionary algorithms. Proceedings of the 1st International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications GALESIA, September 12-14, 1995, Sheffield, UK., pp: 226-231
    Direct Link  |  


  30. Patton, R.J. and G.P. Liu, 1994. Robust control design via eigenstructure assignment, geneticalgorithms and gradient-based optimisation. IEE Proc. Control Theory Appl., 141: 202-208.
    Direct Link  |  


  31. Caruana, R.A. and J.D. Schaffer, 1988. Representation and hidden bias: Gray vs. Binary coding for genetic algorithms. Proceedings of the International Conference on Machine Learning, June 12-14, 1988, Morgan Kaufmann, Los Altos, CA., pp: 153-161


  32. Chen, S., S.A. Billings and W. Luo, 1989. Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control, 50: 1873-1896.
    CrossRef  |  


  33. Timothyf, C., B. Pault and W. Liu, 1988. Robot path planning using a genetic algorithm. Proceedings of the 2nd Annual Workshop on Space Operations Automation and Robotics, July 20-23, 1988, USA., pp: 383-389
    Direct Link  |  


  34. Spears, W.M., K.A. de Jong, T. Back, D.B. Fogel and H. de Garis, 1993. An overview of evolutionary computation. Proceedings of the European Conference on Machine Learning, April 5-7, 1993, Springer-Verlag, London, UK., pp: 442-459
    Direct Link  |  


  35. Schmitendorf, W.E., O. Shaw, R. Benson and S. Forrest, 1992. Using genetic algorithms for controller design-Simultaneous stabilization and eigenvalue placement in a region. Proceedings of the AIAA Guidance, Navigation and Control Conference, August 10-12, 1992, Hilton Head Island, SC, United States, pp: 757-761
    Direct Link  |  


  36. Spears, W.M. and K.A. De Jong, 1991. On the virtues of parameterized uniform crossover. Proceedings of the 4th International on Genetic Algorithms, (IGA`91), White House Press, pp: 230-236


  37. Rechenberg, I., 1973. Evolutions Strategie: Optimierung Technischer Systeme Nach Prinzipien der Biologischen Evolution. Springer-Verlag, New York


  38. Grefenstette, J.J., 1990. A User's Guide to GENESIS. Navy Center for Applied Research in Artificial Intelligence, Washington, DC., USA


©  2022 Science Alert. All Rights Reserved