Subscribe Now Subscribe Today
Research Article
 

Researches on Scheduling Technology in Oil-refining Industry: A Review



Yucheng Wu, Gang Rong, Lianhai Li, Kaixiang Yang and Zhongli Zhang
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Scheduling optimization in oil-refining industry has been attracted great academic attentions for many years. Most researches on scheduling optimization focus on sub-problems such as crude oil scheduling, production scheduling and blending scheduling and tremendous progress has been made. Meanwhile, the overall scheduling problem which involves multi-stage oil-refining processes is still difficult to handle because of its scale and complexity. This paper reviews the development of modeling strategies and solution approaches of scheduling problems in recent years and gives holistic perspective of researches on scheduling technologies in oil-refining industry.

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Yucheng Wu, Gang Rong, Lianhai Li, Kaixiang Yang and Zhongli Zhang, 2013. Researches on Scheduling Technology in Oil-refining Industry: A Review. Information Technology Journal, 12: 4561-4568.

DOI: 10.3923/itj.2013.4561.4568

URL: https://scialert.net/abstract/?doi=itj.2013.4561.4568
 

REFERENCES

1:  Adhitya, A., R. Srinivasan and I.A. Karimi, 2007. A model-based rescheduling framework for managing abnormal supply chain events. Comput. Chem. Eng., 31: 496-518.
CrossRef  |  Direct Link  |  

2:  ISA, 2010. ANSI/ISA-95.00.01-2010 (IEC 62264-1 Mod) Enterprise-control system integration-Part 1: Models and terminology. http://www.isa.org/Template.cfm?Section=standards2&template=/Ecommerce/ProductDisplay.cfm&ProductID=11225.

3:  Bergamini, M.L., I. Grossmann, N. Scenna and P. Aguirre, 2008. An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms. Comput. Chem. Eng., 32: 477-493.
CrossRef  |  

4:  Berning, G., M. Brandenburg, K. Gursoy, V. Mehta and F.J. Tolle, 2002. An integrated system solution for supply chain optimization in the chemical process industry. OR Spectrum, 24: 371-401.
CrossRef  |  Direct Link  |  

5:  Wu, D. and M.G. Ierapetritou, 2003. Decomposition approaches for the efficient solution of short-term scheduling problems. Comput. Chem. Eng., 27: 1261-1276.
CrossRef  |  Direct Link  |  

6:  Das, B.P., J.G. Rickard, N. Shah and S. Macchietto, 2000. An investigation on integration of aggregate production planning, master production scheduling and short-term production scheudling of batch process operations through a common data model. Comput. Chem. Eng., 24: 1625-1631.
CrossRef  |  Direct Link  |  

7:  Floudas, C.A. and X. Lin, 2004. Continuous-time versus discrete-time approaches for scheduling of chemical processes: A review. Comput. Chem. Eng., 28: 2109-2129.
Direct Link  |  

8:  Gothe-Lundgren, M., J.T. Lundgren and J.A. Persson, 2002. An optimization model for refinery production scheduling. Int. J. Prod. Econ., 78: 255-270.
CrossRef  |  Direct Link  |  

9:  Glismann, K. and G. Gruhn, 2001. Short-term scheduling and recipe optimization of blending processes. Comput. Chem. Eng., 25: 627-634.
CrossRef  |  Direct Link  |  

10:  Guillen, G., M. Badell, A. Espuna and L. Puigjaner, 2006. Simultaneous optimization of process operations and financial decisions to enhance the integrated planning/scheduling of chemical supply chains. Comput. Chem. Eng., 30: 421-436.
CrossRef  |  Direct Link  |  

11:  Grossmann, I., 2005. Enterprise-wide optimization: A new frontier in process systems engineering. AIChE J., 51: 1846-1857.
CrossRef  |  Direct Link  |  

12:  Jia, Z. and M. Ierapetritou, 2003. Mixed-integer linear programming model for gasoline blending and distribution scheduling. Ind. Eng. Chem. Res., 42: 825-835.
CrossRef  |  Direct Link  |  

13:  Jia, Z. and M. Ierapetritou, 2004. Efficient short-term scheduling of refinery operations based on a continuous time formulation. Comput. Chem. Eng., 28: 1001-1019.
CrossRef  |  

14:  Kallrath, J., 2002. Planning and scheduling in the process industry. OR Spectrum, 24: 219-250.
CrossRef  |  Direct Link  |  

15:  Kelly, J.D., 2002. Chronological decomposition heuristic for scheduling: Divide and conquer method. AIChE J., 48: 2995-2999.
CrossRef  |  Direct Link  |  

16:  Kelly, J.D., 2003. Next-generation refinery scheduling technology. Proceedings of the 2003 NPRA Plant Automation and Decision Support Conference, September 21-24, 2003, San Antonio, TX., USA -

17:  Kelly, J.D. and D. Zyngier, 2008. Hierarchical decomposition heuristic for scheduling: Coordinated reasoning for decentralized and distributed decision-making problems. Comput. Chem. Eng., 32: 2684-2705.
CrossRef  |  Direct Link  |  

18:  Kondili, E., C.C. Pantelides and R.W.H. Sargent, 1993. A general algorithm for short-term scheduling of batch operations- I. Milp formulation. Comput. Chem. Eng., 17: 211-217.
CrossRef  |  Direct Link  |  

19:  Lee, H., J.M. Pinto, I.E. Grossmann and S. Park, 1996. Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management. Ind. Eng. Chem. Res., 35: 1630-1641.
CrossRef  |  Direct Link  |  

20:  Li, Z. and M. Ierapetritou, 2008. Process scheduling under uncertainty: Review and challenges. Comput. Chem. Eng., 32: 715-727.
CrossRef  |  Direct Link  |  

21:  Loos, P. and T. Allweyer, 1998. Application of production planning and scheduling in the process industries. Comput. Industry, 36: 199-208.
CrossRef  |  Direct Link  |  

22:  Mendez, C.A., I.E. Grossmann, I. Harjunkoski and P. Kabore, 2006. A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations. Comput. Chem. Eng., 30: 614-634.
CrossRef  |  Direct Link  |  

23:  Magatao, L., L.V.R. Arruda and F. Neves Jr., 2004. A mixed integer programming approach for scheduling commodities in a pipeline. Comput. Chem. Eng., 28: 171-185.
CrossRef  |  Direct Link  |  

24:  Maravelias, C.T. and I.E. Grossmann, 2004. A hybrid MILP/CP decomposition approach for the continuous time scheduling of multipurpose batch plants. Comput. Chem. Eng., 28: 1921-1949.
CrossRef  |  Direct Link  |  

25:  Moro, L.F.L. and J.M. Pinto, 2004. Mixed-integer programming approach for short-term crude oil scheduling. Ind. Eng. Chem. Res., 43: 85-94.
CrossRef  |  

26:  Neiro, S.M.S. and J.M. Pinto, 2004. A general modeling framework for the operational planning of petroleum supply chains. Comput. Chem. Eng., 28: 871-896.
CrossRef  |  Direct Link  |  

27:  Nystrom, R.H., I. Harjunkoski and A. Kroll, 2006. Production optimization for continuously operated processes with optimal operation and scheduling of multiple units. Comput. Chem. Eng., 30: 392-406.
CrossRef  |  Direct Link  |  

28:  Reddy, P.C.P., I.A. Karimi, R. Srinivasan, 2004. A novel solution approach for optimizing crude oil operations. AICHE J., 50: 1177-1197.
Direct Link  |  

29:  Pinto, J.M., M. Joly and L.F.L. Moro, 2000. Planning and scheduling models for refinery operations. Comput. Chem. Eng., 24: 2259-2276.
CrossRef  |  

30:  Pinto, T., A.P.F.D. Barbosa-Povoa and A.Q. Novais, 2008. Design of multipurpose batch plants: A comparative analysis between the STN, m-STN and RTN representations and formulations. Ind. Eng. Chem. Res., 47: 6025-6044.
CrossRef  |  Direct Link  |  

31:  Pistikopoulos, E.N., 1995. Uncertainty in process design and operations. Comput. Chem. Eng., 19: 553-563.
CrossRef  |  Direct Link  |  

32:  Rejowski Jr., R. and J.M. Pinto, 2008. A novel continuous time representation for the scheduling of pipeline systems with pumping yield rate constraints. Comput. Chem. Eng., 32: 1042-1066.
CrossRef  |  Direct Link  |  

33:  Sahinidis, N.V., 2004. Optimization under uncertainty: State-of-the-art and opportunities. Comput. Chem. Eng., 28: 971-983.
CrossRef  |  Direct Link  |  

34:  Shah, N., 1996. Mathematical programming techniques for crude oil scheduling. Comput. Chem. Eng., 20: S1227-S1232.
CrossRef  |  Direct Link  |  

35:  Shobrys, D.E. and D.C. White, 2000. Planning, scheduling and control systems: Why can they not work together. Comput. Chem. Eng., 24: 163-173.
CrossRef  |  Direct Link  |  

36:  Van den Heever, S.A. and I.E. Grossmann, 2003. A strategy for the integration of production planning and reactive scheduling in the optimization of a hydrogen supply network. Comput. Chem. Eng., 27: 1813-1839.
CrossRef  |  Direct Link  |  

37:  Varma, V.A., G.V. Reklaitis, G.E. Blau and J.F. Pekny, 2007. Enterprise-wide modeling and optimization-An overview of emerging research challenges and opportunities. Comput. Chem. Eng., 31: 692-711.
CrossRef  |  Direct Link  |  

38:  Zhang, N. and X.X. Zhu, 2000. A novel modelling and decomposition strategy for overall refinery optimisation. Comput. Chem. Eng., 24: 1543-1548.
CrossRef  |  

39:  Zhang, N. and X.X. Zhu, 2006. Novel modelling and decomposition strategy for total site optimisation. Comput. Chem. Eng., 30: 765-777.
CrossRef  |  

©  2021 Science Alert. All Rights Reserved