Subscribe Now Subscribe Today
Research Article
 

Effect of Allopurinol and Inosine Administration on Xanthine Oxidoreductase Gene Expression in Selected Tissues of Broiler Chickens



T. Settle, E. Falkenstein and H. Klandorf
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Uric acid is considered the most significant factor in amelioration of oxidative burden in birds. Uric acid is formed in the terminal reactions of purine degradation by the enzyme xanthine oxidoreductase (XOR). In this study, inosine, a purine precursor, was fed to 3 groups of 5 birds: Group 1 was fed 0 (control), Group 2, 0.6 mols inosine/kg feed (INO) and Group 3, INO treatment plus 50 mg allopurinol/kg BM (INOAL). Allopurinol is a known inhibitor of XOR and thereby reduces uric acid (UA). INOAL birds showed lower total liver XOR activity (p = 0.005) but kidney XOR activity was not affected. Both INO and INOAL treated birds had higher plasma and kidney UA concentrations than controls. Liver uric acid (LUA) was significantly reduced in INOAL birds when compared to other treatments. XOR gene expression was increased (p = 0.007) in the liver tissue of INOAL birds when compared to CON and INO birds. However, there were no significant changes in XOR gene expression in the kidney tissue. To our knowledge, this is the first report of XOR gene expression measured under these conditions. These results suggest that regulation of UA production is tissue dependent. The results also indicate a compensatory effect of allopurinol on XOR gene expression which can be linked to a decrease in antioxidant protection from UA.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

T. Settle, E. Falkenstein and H. Klandorf, 2015. Effect of Allopurinol and Inosine Administration on Xanthine Oxidoreductase Gene Expression in Selected Tissues of Broiler Chickens. International Journal of Poultry Science, 14: 37-43.

DOI: 10.3923/ijps.2015.37.43

URL: https://scialert.net/abstract/?doi=ijps.2015.37.43

REFERENCES
1:  Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254.
CrossRef  |  PubMed  |  Direct Link  |  

2:  Bataille, A.M., J. Goldmeyer and J.L. Renfro, 2008. Avian renal proximal tubule epithelium urate secretion is mediated by Mrp4. Am. J. Physiol.-Regul. Integr. Comp. Physiol., 295: R2024-R2033.
CrossRef  |  Direct Link  |  

3:  Carro, M.D., E. Falkenstein, K.P. Blemings and H. Klandorf, 2009. Determination of xanthine oxidoreductase activity in broilers: Effect of pH and temperature of the assay and distribution in tissues. Poult. Sci., 88: 2406-2414.
CrossRef  |  Direct Link  |  

4:  Carro, M.D., E. Falkenstein, W.J. Radke and H. Klandorf, 2010. Effects of allopurinol on uric acid concentrations, xanthine oxidoreductase activity and oxidative stress in broiler chickens. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol., 151: 12-17.
CrossRef  |  Direct Link  |  

5:  Cazzaniga, G., M. Terao, P.L. Schiavo, F. Galbiati, F. Segalla, M.F. Seldin and E. Garattini, 1994. Chromosomal mapping, isolation and characterization of the mouse xanthine dehydrogenase gene. Genomics, 23: 390-402.
CrossRef  |  Direct Link  |  

6:  Corte, E.D. and F. Stirpe, 1967. Regulation of xanthine dehydrogenase in chick liver. Further experiments on the effects of inosine, actinomycin D and other factors. Biochem. J., 102: 520-524.
PubMed  |  

7:  Dupont, G.P., T.P. Hueksteadt, B.C. Marshall, U.S. Ryan, J.R. Michael and J.R. Hoidal, 1992. Regulation of xanthine dehydrogenase and xanthine oxidase activity and gene expression in cultured rat pulmonary endothelial cells. J. Clin. Invest., 89: 197-202.
CrossRef  |  PubMed  |  Direct Link  |  

8:  Galbusera, C., P. Orth, D. Fedida and T. Spector, 2006. Superoxide radical production by allopurinol and xanthine oxidase. Biochem. Pharmacol., 71: 1747-1752.
CrossRef  |  Direct Link  |  

9:  Harrison, R., 2002. Structure and function of xanthine oxidoreductase: Where are we now? Free Radic. Biol. Med., 33: 774-797.
CrossRef  |  Direct Link  |  

10:  Hooper, D.C., G.S. Scott, A. Zborek, T. Mikheeva, R.B. Kean, H. Koprowski and S.V. Spitsin, 2000. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barrier permeability changes and tissue damage in a mouse model of multiple sclerosis. FASEB J., 14: 691-698.
Direct Link  |  

11:  Hille, R. and V. Massey, 1981. Studies on the oxidative half-reaction of xanthine oxidase. J. Biol. Chem., 256: 9090-9095.
Direct Link  |  

12:  Itoh, R., T. Nishino, C. Usami and K. Tsushima, 1978. An immunochemical study of the changes in chicken liver xanthine dehydrogenase activity during dietary adaptation. J. Biochem., 84: 19-26.
Direct Link  |  

13:  Klandorf, H., D.S. Rathore, M. Iqbal, X. Shi and K. van Dyke, 2001. Accelerated tissue aging and increased oxidative stress in broiler chickens fed allopurinol. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol., 129: 93-104.
CrossRef  |  Direct Link  |  

14:  Lee, P.C. and J.R. Fisher, 1972. Effect of allopurinol on the accumulation of xanthine dehydrogenase in liver and pancreas of chicks after hatching. Arch. Biochem. Biophys., 148: 277-281.
CrossRef  |  Direct Link  |  

15:  Nishino, T., T. Nishino, L.M. Schopfer and V. Massey, 1989. The reactivity of chicken liver xanthine dehydrogenase with molecular oxygen. J. Biol. Chem., 264: 2518-2527.
Direct Link  |  

16:  Oda, M., Y. Satta, O. Takenaka and N. Takahata, 2002. Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol. Biol. Evol., 19: 640-653.
Direct Link  |  

17:  Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic. Acids Res., 29: e45-e45.
CrossRef  |  PubMed  |  

18:  Remy, C. and W.W. Westerfeld, 1951. The effect of diet on xanthine dehydrogenase in chicken tissues. J. Biol. Chem., 193: 659-667.
Direct Link  |  

19:  Sato, A., T. Nishino, K. Noda, Y. Amaya and T. Nishino, 1995. The structure of chicken liver xanthine dehydrogenase: cDNA cloning and the domain structure. J. Biol. Chem., 270: 2818-2826.
CrossRef  |  Direct Link  |  

20:  SAS., 2002. SAS User's Guide: Statistics. Version 9.0, SAS Institute, Cary, NC.

21:  Scholz, R.W. and W.R. Featherston, 1968. Effect of alterations in protein intake on liver xanthine dehydrogenase in the chick. J. Nutr., 95: 271-277.
Direct Link  |  

22:  Settle, T., M.D. Carro, E. Falkenstein, W. Radke and H. Klandorf, 2012. The effects of allopurinol, uric acid and inosine administration on xanthine oxidoreductase activity and uric acid concentrations in broilers. Poult. Sci., 91: 2895-2903.
CrossRef  |  Direct Link  |  

23:  Simoyi, M.F., K. Van Dyke and H. Klandorf, 2002. Manipulation of plasma uric acid in broiler chicks and its effect on leukocyte oxidative activity. Am. J. Physiol.-Regul. Integr. Comp. Physiol., 282: R791-R796.
CrossRef  |  Direct Link  |  

24:  Stinefelt, B., S.S. Leonard, K.P. Blemings, X. Shi and H. Klandorf, 2005. Free radical scavenging, DNA protection and inhibition of lipid peroxidation mediated by uric acid. Ann. Clin. Lab. Sci., 35: 37-45.
PubMed  |  Direct Link  |  

25:  Strittmatter, C.F., 1965. Studies on avian xanthine dehydrogenases: Properties and patterns of appearance during development. J. Biol. Chem., 240: 2557-2564.
Direct Link  |  

26:  Suzuki, Y., J.I. Sudo and T. Tanabe, 1984. Allopurinol toxicity: Its toxic organ-specificity between the liver and the kidney in the rat. J. Toxicol. Sci., 9: 343-351.
CrossRef  |  Direct Link  |  

27:  Terao, M., M. Kurosaki, S. Zanotta and E. Garattini, 1997. The xanthine oxidoreductase gene: Structure and regulation. Biochem. Soc. Trans., 25: 791-796.
PubMed  |  

28:  Xu, P., X.L. Zhu, T.P. Huecksteadt, A.R. Brothman and J.R. Hoidal, 1994. Assignment of human xanthine dehydrogenase gene to chromosome 2p22. Genomics, 23: 289-291.
CrossRef  |  Direct Link  |  

29:  Xu, P., T.P. Huecksteadt and J.R. Hoidal, 1996. Molecular cloning and characterization of the human xanthine dehydrogenase gene (XDH). Genomics, 34: 173-180.
CrossRef  |  Direct Link  |  

30:  Woodward, W.D., P.C. Lee, N.W. DeLapp and J.R. Fisher, 1972. Induction of chick liver xanthine dehydrogenase by purines. Arch. Biochem. Biophys., 153: 537-542.
CrossRef  |  Direct Link  |  

©  2021 Science Alert. All Rights Reserved