Subscribe Now Subscribe Today
Research Article
 

Effect of Dietary Nano-Selenium Supplementation on Selenium Content and Oxidative Stability in Table Eggs and Productive Performance of Laying Hens



Nadia L. Radwan, T.A. Salah Eldin, A.A. EL- Zaiat and Mona A.S.A. Mostafa
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

The main target of this study was to evaluate the effect of dietary Nano-Selenium (Nano-Se) supplementation on selenium (Se) content and oxidative stability in table eggs and productive performance of laying hens. One hundred and eighty silver Montazah laying hens (Egyptian local developed strain) aged 32 weeks were housed in individual cages in a semi-open house. Birds were divided randomly into six treatments and fed a basal diet (vitamins and minerals mixture without Se). The experiment involved a 2 x 3 factorial arrangement, 2 Se sources (sodium selenite and Nano-Se) and 3 levels of each source (0.10, 0.25 and 0.40 ppm). Feed and water were provided ad libitum throughout the experimental period (three month). The prepared 80 nm Se nano particles were synthesized by chemical reduction method and characterized by Transmission Electron Microscope, X-ray diffraction and spectrophotometry. Different Se levels of sodium selenite or Nano-Se did not affect egg weight, feed intake and most of egg quality. Egg production percentage and egg mass increased and the feed conversion ratio significantly improved, by adding Nano-Se in layer diets. Increasing Se level from 0.10 up to 0.40 ppm either sodium selenite or Nano-Se significantly increasing Se content in eggs and the highest concentration was recorded with high level (0.40 ppm) of Nano-Se. Moreover, increased glutathione peroxides (GSH-Px) activity, with reduction of Malondialdehyde (MDA) content in yolk of stored eggs at room temperature for 15 days. Adding 0.25 ppm of Nano-Se recorded the lower saturated to unsaturated fatty acids ratio thus improved the fatty acid profile and oxidative stability during storage. Nano-Se significantly reduced total lipids, total cholesterol and increased HDL-cholesterol to total cholesterol ratio in maternal hens (plasma and yolk). The main histopathological findings of livers for all treatments were fatty liver with focal aggregation of inflammatory cells. While the spleen showed congestion of blood vessels. Conclusions: It can be concluded that, supplemental layer diets with 0.25 ppm of Nano-Se was effective in improving the productive performance and GSH-Px activity of layer and producing Se enriched egg which could supply 50% (35 μg) of the human Se Recommended Daily Allowances. This give a hand in solving the problem of Se deficiency in food for human.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Nadia L. Radwan, T.A. Salah Eldin, A.A. EL- Zaiat and Mona A.S.A. Mostafa, 2015. Effect of Dietary Nano-Selenium Supplementation on Selenium Content and Oxidative Stability in Table Eggs and Productive Performance of Laying Hens. International Journal of Poultry Science, 14: 161-176.

DOI: 10.3923/ijps.2015.161.176

URL: https://scialert.net/abstract/?doi=ijps.2015.161.176

REFERENCES
Abaza, M., 2002. Immune system and some physiological aspects in Japanese quail affected by antioxidants. Egypt. Poult. Sci., 22: 259-276.

Arthur, J.R., G.J. Beckett and J.H. Mitchell, 1999. The interactions between selenium and iodine deficiencies in man and animals. Nutr. Res. Rev., 12: 55-73.
CrossRef  |  PubMed  |  Direct Link  |  

Attia, Y.A., A.A. Abdalah, H.S. Zeweil, F. Bovera, A.A.T. El-Din and M.A. Araft, 2010. Effect of inorganic or organic selenium supplementation on productive performance, egg quality and some physiological traits of dual-purpose breeding hens. Cezh J. Anim. Sci., 55: 505-519.
Direct Link  |  

Bancroft, J.D., A. Stevens and D.R. Turner, 1996. Theory and Practice of Histological Techniques. 4th Edn., Churchill, Livingston, New York, London, San Francisco, Tokyo.

Benko, I., G. Nagy, B. Tanczos, E. Ungvari and A. Sztrik et al., 2012. Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ. Toxicol. Chem., 31: 2812-2820.
CrossRef  |  Direct Link  |  

Brown, A.J. and W. Jessup, 1999. Oxysterols and atherosclerosis. Atherosclerosis, 142: 1-28.
CrossRef  |  PubMed  |  Direct Link  |  

Cai, S.J., C.X. Wu, L.M. Gong, T. Song, H. Wu and L.Y. Zhang, 2012. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance and tissue selenium content in broilers. Poult. Sci., 91: 2532-2539.
CrossRef  |  PubMed  |  Direct Link  |  

Chantiratikul, A., O. Chinrasri and P. Chantiratikul, 2008. Effect of sodium selenite and zinc-L-selenomethionine on performance and selenium concentrations in eggs of laying hens. Asian Aust. J. Anim. Sci., 21: 1048-1052.
Direct Link  |  

Combs, Jr. G.F. and S.B. Combs, 1986. The Role of Selenium in Nutrition. Academic Press, Boca Raton, Florida..

Cottenie, A., M. Verloo, L. Kiekens, G. Velghe and R. Camerlynck, 1982. Chemical Analysis of Plants and Soils. Laboratory of Analytical and Agrochemistry, State University-Ghent, Belgium.

Dehkordi, K.K., 2014. Effect of selenium nano-particle on the hepatic changes in rat. World J. Zool., 9: 1-3.
Direct Link  |  

Duncan, D.B., 1955. Multiple range and multiple F tests. Biometrics, 11: 1-42.
CrossRef  |  Direct Link  |  

Eisen, E.J., B.B. Bohren and H.E. McKean, 1962. The Haugh unit as a measure of egg albumen quality. Poult. Sci., 41: 1461-1468.
CrossRef  |  Direct Link  |  

Folch, J., M. Lees and G.H.S. Stanley, 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226: 497-509.
PubMed  |  Direct Link  |  

Gajcevic, Z., G. Kralik, E. Has-Schon and V. Pavic, 2009. Effects of organic selenium supplemented to layer diet on table egg freshness and selenium content. Ital. J. Anim. Sci., 8: 189-199.
Direct Link  |  

Gawel, S., M. Wardas, E. Niedworok and P. Wardas, 2004. [Malondialdehyde (MDA) as a lipid peroxidation marker]. Wiad. Lek., 57: 453-455, (In Polish).
PubMed  |  Direct Link  |  

Gjorgovska, N., F. Kiril, L. Vesna and K. Tosho, 2012. The effect of different levels of selenium in feed on egg production, egg quality and selenium content in yolk. Lucrari Stiintifice Seria Zootehnie, 57: 270-274.
Direct Link  |  

Haug, A., S. Eich-Greatorex, A. Bernhoft, J.P. Wold, H. Hetland, O.A. Christophersen and T. Sogn, 2007. Effect of dietary selenium and omega-3 fatty acids on muscle composition and quality in broilers. Lipids Health Dis., 6: 29-37.
CrossRef  |  PubMed  |  Direct Link  |  

Haugh, R.R., 1937. The haugh unit for measuring egg quality. US. Egg Poult. Mag., 43: 552-573.
Direct Link  |  

Hong, Y., C.H. Li, J.R. Burgess, M. Chang, A. Salem, K. Srikumar and C.C. Reddy, 1989. The role of selenium-dependent and selenium-independent glutathione peroxidases in the formation of prostaglandin F2 alpha. J. Biol. Chem., 264: 13793-13800.
Direct Link  |  

Hu, C.H., Y.L. Li, L. Xiong, H.M. Zhang, J. Song and M.S. Xia, 2012. Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim. Feed Sci. Tech., 177: 204-210.
CrossRef  |  Direct Link  |  

Huang, B., J. Zhang, J. Hou and C. Chen, 2003. Free radical scavenging efficiency of Nano-Se in vitro. Free Radical Biol. Med., 35: 805-813.
CrossRef  |  Direct Link  |  

Institute of Medicine, 2000. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium and Carotenoids. National Academy Press, Washington, DC., USA., ISBN: 9780309069359, Pages: 506.

Klopotek, A., F. Hirche and K. Eder, 2006. PPARγ ligand troglitazone lowers cholesterol synthesis in HepG2 and Caco-2 cells via a reduced concentration of nuclear SREBP-2. Exp. Biol. Med., 231: 1365-1372.
Direct Link  |  

Konjufca, V.H., G.M. Pesti and R.I. Bakalli, 1997. Modulation of cholesterol levels in broiler meat by dietary garlic and copper. Poult. Sci., 76: 1264-1271.
CrossRef  |  PubMed  |  Direct Link  |  

Kotaiah, T. and S.C. Mohapatra, 1974. Measurement of albumin quality. India Poult. Ganzette, 59: 369-378.

Kralik, Z., G. Kralik, M. Greevic, P. Suchy and E. Strakova, 2012. Effects of increased content of organic selenium in feed on the selenium content and fatty acid profile in broiler breast muscle. Acta Veterinaria Brno, 81: 31-35.
CrossRef  |  Direct Link  |  

Kucharzewski, M., J. Braziewicz, U. Majewska and S. Gozdz, 2003. Copper, zinc and selenium in whole blood and thyroid tissue of people with various thyroid diseases. Biol. Trace Elem. Res., 93: 9-18.
CrossRef  |  Direct Link  |  

Leeson, S., H. Namkung, L. Caston, S. Durosoy and P. Schlegel, 2008. Comparison of selenium levels and sources and dietary fat quality in diets for broiler breeders and layer hens. Poult. Sci., 87: 2605-2612.
CrossRef  |  Direct Link  |  

Liao, C.D., W.L. Hung, K.C. Jan, A.I. Yeh, C.T. Ho and L.S. Hwang, 2010. Nano/sub-microsized lignan glycosides from sesame meal exhibit higher transport and absorption efficiency in Caco-2 cell monolayer. Food Chem., 119: 896-902.
CrossRef  |  Direct Link  |  

Masukawa, T., J. Goto and H. Iwata, 1983. Impaired metabolism of arachidonate in selenium deficient animals. Experientia, 39: 405-406.
CrossRef  |  Direct Link  |  

Mohapatra, P., R.K. Swain, S.K. Mishra, T. Behera and P. Swain et al., 2014. Effects of dietary nano-selenium on tissue selenium deposition, antioxidant status and immune functions in layer chicks. Int. J. Pharmacol., 10: 160-167.
CrossRef  |  Direct Link  |  

Nassir, F., C. Moundras, D. Bayle, C. Serougne and E. Gueux et al., 1997. Effect of selenium deficiency on hepatic lipid and lipoprotein metabolism in the rat. Br. J. Nutr., 78: 493-500.
CrossRef  |  Direct Link  |  

Paton, N.D., A.H. Cantor, A.J. Pescatore and M.J. Ford, 2000. Effect of dietary selenium source, level of inclusion and length of storage on internal quality and shell strength of eggs. Poult. Sci., 79: 75-116.

Payne, R.L., T.K. Lavergne and L.L. Southern, 2005. Effect of inorganic versus organic selenium on hen production and egg selenium concentration. Poult. Sci., 84: 232-237.
CrossRef  |  Direct Link  |  

Peng, D., J. Zhang, Q. Liu and E.W. Taylor, 2007. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J. Inorg. Biochem., 101: 1457-1463.
CrossRef  |  Direct Link  |  

Poirier, J., K. Cockell, N. Hidiroglou, R. Madere, K. Trick and S. Kubow, 2002. The effects of vitamin E and selenium intake on oxidative stress and plasma lipids in hamsters fed fish oil. Lipids, 37: 1124-1132.
CrossRef  |  Direct Link  |  

Preter, F.S., 2000. Organic selenium: Benefits to animal and humans, a biochemist's view. Proceedings of the Alltech's 16th Annual Symposium, January 1, 2000, Nottingham, pp: 205-213.

Reis, R.N., S.L. Vieira, P.C. Nascimento, J.E. Pena, R. Barros and C.A. Torres, 2009. Selenium contents of eggs from broiler breeders supplemented with sodium selenite or zinc-L-selenium-methionine. J. Applied Poult. Res., 18: 151-157.
CrossRef  |  Direct Link  |  

SAS., 1999. SAS/STAT User's Guide. 5th Edn., Statistical Analysis System Institute Inc., Cary, NC., ISBN: 1590472438.

Saleh, A.A., 2014. Effect of dietary mixture of Aspergillus probiotic and selenium nano-particles on growth, nutrient digestibilities, selected blood parameters and muscle fatty acid profile in broiler chickens. Anim. Sci. J., 32: 65-79.
Direct Link  |  

Satoh, K., 1978. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta, 90: 37-43.
CrossRef  |  PubMed  |  Direct Link  |  

Sauter, E.A., W.J. Stadelman, V. Harns and B.A. Mclaren, 1951. Methods for measuring yolk index. Poult. Sci., 30: 629-630.
CrossRef  |  Direct Link  |  

Schrauzer, G.N., 2000. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr., 130: 1653-1656.
Direct Link  |  

Schrauzer, G.N., 2009. Selenium and selenium-antagonistic elements in nutritional cancer prevention. Crit. Rev. Biotechnol., 29: 10-17.
CrossRef  |  Direct Link  |  

Seko, Y. and N. Imura, 1997. Active oxygen generation as a possible mechanism of selenium toxicity. Biomed. Environ. Sci., 10: 333-339.
Direct Link  |  

Surai, P.F. and N.H.C. Sparks, 2001. Designer eggs: From improvement of egg composition to functional food. Trends Food Sci. Technol., 12: 7-16.
CrossRef  |  Direct Link  |  

Surai, P.F., 2002. Selenium in poultry nutrition 2. Reproduction, egg and meat quality and practical applications. World Poult. Sci. J., 58: 431-450.
CrossRef  |  Direct Link  |  

Surai, P.F., 2006. Selenium in Nutrition and Health. 1st Edn. Nottingham University Press, Nottingham, UK.

Touyz, R.M. and E.L. Schiffrin, 2006. Peroxisome proliferator-activated receptors in vascular biology-molecular mechanisms and clinical implications. Vasc. Pharmacol., 45: 19-28.
CrossRef  |  Direct Link  |  

Underwood, E.J. and N.F. Suttle, 1999. Selenium. In: The Mineral Nutrition of Livestock, Underwood, E.J. and N.F. Suttle (Eds.). CABI Publishing, Penicuik, UK., pp: 421-476.

Valentic, A., G. Krivec and A. Nemanic, 2003. Benefits of organic selenium in feeding broiler breeders and laying hens. MESO: Prvi Hrvatski Casopis Mesu, 7: 52-58.
Direct Link  |  

Vunta, H., F. Davis, U.D. Palempalli, D. Bhat and R.J. Arner et al., 2007. The anti-inflammatory effects of selenium are mediated through 15-deoxy-Δ12,14-prostaglandin J2 in macrophages. J. Biol. Chem., 282: 17964-17973.
CrossRef  |  Direct Link  |  

Wang, H.L., J.S. Zhang and H.Q. Yu, 2007. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radical Biol. Med., 42: 1524-1533.
CrossRef  |  Direct Link  |  

Wang, Y.B. and B.H. Xu, 2008. Effect of different selenium source (sodium selenite and selenium yeast) on broiler chickens. Anim. Feed Sci. Tech., 144: 306-314.
CrossRef  |  Direct Link  |  

Wang, Z.G., X.J. Pan, W.Q. Zhang, Z.Q. Peng, R.Q. Zhao and G.H. Zhou, 2010. Methionine and selenium yeast supplementation of the maternal diets affects antioxidant activity of breeding eggs. Poult. Sci., 89: 931-937.
CrossRef  |  Direct Link  |  

Xia, M.S., H.M. Zhang, C.H. Hu and Z.R. Xu, 2005. Effect of nano-selenium on growth performance and antioxidant function of broiler chicken. Acta Nutrimenta Sinica, 4: 307-310.
Direct Link  |  

Yang, Y.R., F.C. Meng, P. Wang, Y.B. Jiang and Q. Yin et al., 2012. Effect of organic and inorganic selenium supplementation on growth performance, meat quality and antioxidant property of broilers. Afr. J. Biotechnol., 11: 3031-3036.
Direct Link  |  

Zdunczyk, Z., A. Drazbo, J. Jankowski, J. Juskiewicz, Z. Antoszkiewicz and A. Troszynska, 2013. The effect of dietary vitamin E and selenium supplements on the fatty acid profile and quality traits of eggs. Arch. Tierzucht., 72: 719-732.

Zhang, J.S., X.F. Wang and T.W. Xu, 2008. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: Comparison with Se-methylselenocysteine in mice. Toxicol. Sci., 101: 22-31.
CrossRef  |  Direct Link  |  

Zhang, J.S., H.L. Wang, X.X. Yan and L. Zhang, 2005. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci., 76: 1099-1109.
CrossRef  |  Direct Link  |  

Zhang, S.Y., J. Zhang, H.Y. Wang and H.Y. Chen, 2004. Synthesis of selenium nanoparticles in the presence of polysaccharides. Mater. Lett., 58: 2590-2594.
CrossRef  |  Direct Link  |  

Zhou, X. and Y. Wang, 2011. Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality and glutathione peroxidase activity in Guangxi Yellow chicken. Poult. Sci., 90: 680-686.
CrossRef  |  PubMed  |  Direct Link  |  

©  2020 Science Alert. All Rights Reserved