Subscribe Now Subscribe Today
Research Article
 

Effects of Dietary Antioxidant on Performance and Physiological Responses Following Heat Stress in Laying Hens



J.N. Felver-Gant, R.L. Dennis, J. Zhao and H.W. Cheng
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Heat stress (HS) causes oxidative damage, increasing mortality and reducing productivity in chickens. The objective of this study was to determine the benefits of antioxidant supplementation in laying hens during HS. Eighty 32-week-old W-36 White Leghorn hens were used in this study. Hens were randomly pair-housed in two adjacent rooms and fed a control diet (CF) or control diet mixed with Agrado Plus Ultra®, an antioxidant, at 160 mg/kg (AF) for two weeks. One room was then subjected to a hot climate (H) (33°C) for 8 days. Physical and physiological data were collected at day 1 and 8 during the treatment. Core body temperature was increased (p<0.0001) and BW (p<0.05) and liver weight (p<0.0001) were reduced in laying hens regardless of treatment. However, compared to its respective controls, the concentrations of heat shock protein 70 (HSP70) were increased in H-AF hens (p< 0.01) but not in H-CF hens (p>0.05) at 8 days during the process of HS. Similarly, HSP70 mRNA expression tended to increase in H-AF hens only (p = 0.09). Heat stress reduced the concentrations of total CO2 and bicarbonate (p<0.05), indicating respiratory alkalosis and decreased vitamin A (p<0.01), vitamin E (p<0.0001) and glutathione peroxidase (p<0.05) concentrations but increased protein carbonyl concentrations (p<0.05), indicating protein oxidative damage. A temperature by feed interaction was observed in the concentrations of partial pressure CO2 (pCO2, p<0.05), superoxide dismutase (SOD, p = 0.06) and protein carbonyl (p = 0.1). Heat stress-caused decreases in pCO2 and SOD and increases in protein carbonyl concentrations were found in control hens but not in AF hens. These results suggest antioxidant supplementation attenuates oxidative stress response in laying hens. These data support the hypothesis that supplemental antioxidants improve hen well-being by reducing HS associated physical and physiological damage.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

J.N. Felver-Gant, R.L. Dennis, J. Zhao and H.W. Cheng, 2014. Effects of Dietary Antioxidant on Performance and Physiological Responses Following Heat Stress in Laying Hens. International Journal of Poultry Science, 13: 260-271.

DOI: 10.3923/ijps.2014.260.271

URL: https://scialert.net/abstract/?doi=ijps.2014.260.271

REFERENCES
1:  Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, 2002. Molecular Biology of the Cell. 4th Edn., Garland Science, New York, USA., Pages: 1463.

2:  Azad, K.M.A., M. Kikusato, A.M. Hoque and M. Toyomizu, 2010. Effect of chronic heat stress on performance and oxidative damage in different strains of chickens. J. Poult. Sci., 47: 333-337.
CrossRef  |  Direct Link  |  

3:  Azad, M.A.K., M. Kikusato, T. Maekawa, H. Shirakawa and M. Toyomizu, 2010. Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol., 155: 401-406.
CrossRef  |  Direct Link  |  

4:  Bains, J.S., R. Kakkar and S.P. Sharma, 1996. Gender specific alterations in antioxidant status of aging Zaprionus paravittiger fed on propyl gallate. IUBMB Life, 40: 731-740.
CrossRef  |  Direct Link  |  

5:  Benedetti, M.G., A.L. Foster, M.C. Vantipalli and M.P. White et al., 2008. Compounds that confer thermal stress resistance and extended lifespan. Exp. Gerontol., 43: 882-891.
CrossRef  |  Direct Link  |  

6:  Bhattacharya, A., A. Chatterjee, S. Ghosal and S.K. Bhattacharya, 1999. Antioxidant activity of active tannoid principles of Emblica officinalis (Amla). Indian J. Exp. Biol., 37: 676-680.
PubMed  |  Direct Link  |  

7:  Borges, S.A., A.V.F. da Silva, A. Majork, D.M. Hooge and K.R. Cummings, 2004. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (Sodium plus potassium minus chloride, milliequivalents per kilogram). Poult. Sci., 83: 1551-1558.
CrossRef  |  Direct Link  |  

8:  Bouwstra, R.J., R.M.A. Goselink, P. Dobbelaar, M. Nielen, J.R. Newbold and T. van Werven, 2008. The relationship between oxidative damage and vitamin E Concentration in blood, milk and liver tissue from vitamin E supplemented and nonsupplemented periparturient heifers. J. Dairy Sci., 91: 977-987.
CrossRef  |  

9:  Cabel, M.C. and P.W. Waldroup, 1989. Research note: Ethoxyquin and ethylenediaminetetraacetic acid for the prevention of rancidity in rice bran stored at elevated temperature and humidity for various lengths of time. Poult. Sci., 68: 438-442.
CrossRef  |  Direct Link  |  

10:  Cabel, M.C., P.W. Waldroup, W.D. Shermer and D.F. Calabotta, 1988. Effects of ethoxyquin feed preservative and peroxide level on broiler performance. Poult. Sci., 67: 1725-1730.
CrossRef  |  Direct Link  |  

11:  Cadenas, E. and K.J.A. Davies, 2000. Mitochondrial free radical generation, oxidative stress and aging. Free Radic. Biol. Med., 29: 222-230.
CrossRef  |  PubMed  |  Direct Link  |  

12:  Catignani, G.L., 1985. An HPLC method for the simultaneous determination of retinol and alpha-tocopherol in plasma or serum. Methods Enzymol., 123: 215-219.

13:  Chen, C.H., T.Z. Liu, C.H. Chen, C.H. Wong, C.H. Chen, F.J. Lu and S.C. Chen, 2007. The efficacy of protective effects of tannic acid, gallic acid, ellagic acid and propyl gallate against hydrogen peroxide‐induced oxidative stress and DNA damages in IMR‐90 cells. Mol. Nutr. Food Res., 51: 962-968.
CrossRef  |  

14:  Cheng, H.W., R. Freire and E.A. Pajor, 2004. Endotoxin stress responses in chickens from different genetic lines. 1. Sickness, behavioral and physical responses. Poult. Sci., 83: 707-715.
Direct Link  |  

15:  Cheng, W., F. Yang, S. Liu, C.K. Colton and C. Wang et al., 2012. Heteromeric heat-sensitive transient receptor potential channels exhibit distinct temperature and chemical response. J. Biol. Chem., 287: 7279-7288.
Direct Link  |  

16:  Chow, C.K., 2009. Role of vitamin E in cellular antioxidant defense. Curr. Chem. Biol., 3: 197-202.
Direct Link  |  

17:  Chow, C.K., 1991. Vitamin E and oxidative stress. Free Radic. Biol. Med., 11: 215-232.
CrossRef  |  Direct Link  |  

18:  Combs, G.F. and M.L. Scott, 1974. Antioxidant effects on selenium and vitamin E function in the chick. J. Nutr., 104: 1297-1303.
Direct Link  |  

19:  Cooke, M.S., M.D. Evans, M. Dizdaroglu and J. Lunec, 2003. Oxidative DNA damage: Mechanisms, mutation and disease. FASEB J., 17: 1195-1214.
CrossRef  |  PubMed  |  Direct Link  |  

20:  Deeb, N. and A. Cahaner, 2001. Genotype-by-environment interaction with broiler genotypes differing in growth rate. 1. The effects of high ambient temperature and naked-neck genotype on lines differing in genetic background. Poult. Sci., 80: 695-702.
CrossRef  |  Direct Link  |  

21:  Di Simplicio, P., R. Rossi, S. Falcinelli, R. Ceserani and M.L. Formento, 1997. Antioxidant status in various tissues of the mouse after fasting and swimming stress. Eur. J. Applied Physiol. Occup. Physiol., 76: 302-307.
CrossRef  |  Direct Link  |  

22:  Droge, W., 2002. Free radicals in the physiological control of cell function. Phsyol. Rev., 82: 47-95.
CrossRef  |  PubMed  |  Direct Link  |  

23:  Duffy, S., A. So and T.H. Murphy, 1998. Activation of endogenous antioxidant defenses in neuronal cells prevents free radical-mediated damage. J. Neurochem., 71: 69-77.
CrossRef  |  Direct Link  |  

24:  Duthie, S.J., A. Ma, M.A. Ross and A.R. Collins, 1996. Antioxidant supplementation decreases oxidative DNA damage in human lymphocytes. Cancer Res., 56: 1291-1295.
PubMed  |  Direct Link  |  

25:  El Hadi, H. and A.H. Sykes, 1982. Thermal panting and respiratory alkalosis in the laying hen. Br. Poult. Sci., 23: 49-57.
CrossRef  |  Direct Link  |  

26:  Elijah, O.A. and A. Adedapo, 2006. The effect of climate on poultry productivity in Ilorin Kwara state, Nigeria. Int. J. Poult. Sci., 5: 1061-1068.
CrossRef  |  Direct Link  |  

27:  Fahey, A.G., R.M. Marchant-Forde and H.W. Cheng, 2007. Relationship between body weight and beak characteristics in one-day-old white leghorn chicks: Its implications for beak trimming. Poult. Sci., 86: 1312-1315.
Direct Link  |  

28:  Felver-Gant, J.N., L.A. Mack, R.L. Dennis, S.D. Eicher and H.W. Cheng, 2012. Genetic variations alter physiological responses following heat stress in 2 strains of laying hens. Poult. Sci., 91: 1542-1551.
CrossRef  |  Direct Link  |  

29:  Flanagan, S.W., A.J. Ryan, C.V. Gisolfi and P.L. Moseley, 1995. Tissue-specific HSP70 response in animals undergoing heat stress. Am. J. Physiol. Regul. Integr. Comp. Physiol., 37: R28-R32.
Direct Link  |  

30:  Franco-Jimenez, D.J. and M.M. Beck, 2007. Physiological changes to transient exposure to heat stress observed in laying hens. Poult. Sci., 86: 538-544.
CrossRef  |  PubMed  |  Direct Link  |  

31:  Frei, B., 2004. Efficacy of dietary antioxidants to prevent oxidative damage and inhibit chronic disease. J. Nutr., 134: 3196S-3198S.
Direct Link  |  

32:  Geraert, P.A., J.C.F. Padilha and S. Guillaumin, 1996. Metabolic and endocrine changes induced by chronic heat exposure in broiler chickens: Growth performance, body composition and energy retention. Br. J. Nutr., 75: 195-204.
CrossRef  |  Direct Link  |  

33:  Gothard, L.Q., M.E Ruffner, J.G. Woodward, O.K. Park-Sarge and K.D. Sarge, 2003. Lowered temperature set point for activation of the cellular stress response in T-lymphocytes. J. Biol. Chem., 278: 9322-9326.
Direct Link  |  

34:  Gupta, P.K. and A. Boobis, 2005. Ethoxyquin (addendum). JMPR, pp: 241-253. http://libdoc.who.int/publications/2006/9241665211_9_eng.pdf.

35:  Halliwell, B., 2007. Oxidative stress and cancer: Have we moved forward? Biochem. J., 401: 1-11.
CrossRef  |  PubMed  |  Direct Link  |  

36:  Halliwell, B., 1996. Commentary oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic. Res., 25: 57-74.
CrossRef  |  PubMed  |  

37:  Han, H., H.S. Hussein, H.A. Glimp, D.H. Salyer and L.W. Green, 2002. Carbohydrate fermentation and nitrogen metabolism of a finishing beef diet by ruminal microbes in continous cultures as affected by ethoxyquin and (or) supplementation of monensin and tylosin. J. Anim. Sci., 80: 1117-1123.
Direct Link  |  

38:  Hawrysh, Z.J., M.K. Erin, Y.C. Lin and R.T. Hardin, 1992. Propyl gallate and ascorbyl palmitate affect stability of canola oils in accelerated storage. J. Food Sci., 57: 1234-1238.
CrossRef  |  Direct Link  |  

39:  Herrera, E. and C. Barbas, 2001. Vitamin E: Action, metabolism and perspectives. J. Physiol. Biochem., 57: 43-56.
CrossRef  |  PubMed  |  Direct Link  |  

40:  Huang, H.Y., K.J. Helzlsouer and L.J. Appel, 2000. The effects of vitamin C and vitamin E on oxidative DNA damage: Results from a randomized controlled trial. Cancer Epidemiol. Biomarkers Prevent., 9: 647-652.
Direct Link  |  

41:  Javid, B., P.A. MacAry and P.J. Lehner, 2007. Structure and function: Heat shock proteins and adaptive immunity. J. Immunol., 179: 2035-2040.
Direct Link  |  

42:  Jung, H.J., S.J. Kim, W.K. Jeon, B.C. Kim and K. Ahn et al., 2011. Anti-inflammatory activity of n-propyl gallate through down-regulation of NF-κB and JNK pathways. Inflammation, 34: 352-361.

43:  Kadim, I.T., B.H.A. Al-Qamshui, O. Mahgoub, W. Al-Marzooqi and E.H. Johnson, 2008. Effect of seasonal temperatures and ascorbic acid supplementation on performance of broiler chickens maintained in closed and open-sided houses. Int. J. Poult. Sci., 7: 655-660.
CrossRef  |  Direct Link  |  

44:  Kawano, Y., M. Kawaguchi, K. Hirota, S. Kai, N. Konishi and H. Furuya, 2012. Effects of n-propyl gallate on neuronal survival after forebrain ischemia in rats. Resuscitation, 83: 249-252.
CrossRef  |  Direct Link  |  

45:  Kegley, B., D. Hellwig, D. Gill and F. Owens, 2000. Effect of Agrado® on performance and health of calves new to the feedlot environment. Arkansas Animal Science Department Report, pp: 84-87. http://www.beefstockerusa.org/research/arkansas/EffectAgrado.pdf.

46:  Kennedy, G., V.A. Spence, M. McLaren, A. Hill, C. Underwood and J.J. Belch, 2005. Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic. Biol. Med., 39: 584-589.
CrossRef  |  Direct Link  |  

47:  Kmiec, Z., 2001. Cooperation of Liver Cells in Health and Disease. Vol. 161, Springer, New York, USA., pp: 9-45.

48:  Kraft, A.D., D.A. Johnson and J.A. Johnson, 2004. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J. Neurosci., 24: 1101-1112.
CrossRef  |  Direct Link  |  

49:  Lee, C.T., L. Zhong, T.A. Mace and E.A. Repasky, 2012. Elevation in body temperature to fever range enhances and prolongs subsequent responsiveness of macrophages to endotoxin challenge. PloS One, Vol. 7 10.1371/journal.pone.0030077

50:  Lin, H., E. Decuypere and J. Buyse, 2006. Acute heat stress induces oxidative stress in broiler chickens. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol., 144: 11-17.
CrossRef  |  PubMed  |  Direct Link  |  

51:  Lin, H., H.F. Zhang, R. Du, X.H. Gu, Z.Y. Zhang, J. Buyse and E. Decuypere, 2005. Thermoregulation responses of broiler chickens to humidity at different ambient temperatures. II. Four weeks of age. Poult. Sci., 84: 1173-1178.
CrossRef  |  PubMed  |  Direct Link  |  

52:  Lin, H., L.F. Wang, J.L. Song, Y.M. Xie and Q.M. Yang, 2002. Effect of dietary supplemental levels of vitamin A on the egg production and immune responses of heat-stressed laying hens. Poult. Sci., 81: 458-465.
Direct Link  |  

53:  Manoli, I., S. Alesci, M.R. Blackman, Y.A. Su, O.M. Rennert and G.P. Chrousos, 2007. Mitochondria as key components of the stress response. Trends Endocrinol. Metab., 18: 190-198.
CrossRef  |  Direct Link  |  

54:  Marczuk-Krynicka, D., T. Hryniewiecki, J. Piatek and J. Paluszak, 2003. The effect of brief food withdrawal on the level of free radicals and other parameters of oxidative status in the liver. Med. Sci. Monit., 9: 131-135.
PubMed  |  Direct Link  |  

55:  Meister, A. and M.E. Anderson, 1983. Glutathione. Annu. Rev. Biochem., 52: 711-760.
CrossRef  |  PubMed  |  Direct Link  |  

56:  Mujahid, A., Y. Akiba and M. Toyomizu, 2009. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol., 297: R690-R698.
CrossRef  |  Direct Link  |  

57:  Mujahid, A., K. Sato, Y. Akiba and M. Toyomizu, 2006. Acute heat stress stimulates mitochondrial superoxide production in broiler skeletal muscle, possibly via downregulation of uncoupling protein content. Poult. Sci., 85: 1259-1265.
CrossRef  |  Direct Link  |  

58:  Murapa, P., S. Gandhapudi, H.S. Skaggs, K.D. Sarge and J.G. Woodward, 2007. Physiological fever temperature induces a protective stress response in T lymphocytes mediated by heat shock factor-1 (HSF1). J. Immunol., 179: 8305-8312.
Direct Link  |  

59:  Nakamura, K., 2011. Central circuitries for body temperature regulation and fever. Am. J. Physiol. Regul. Integr. Comp. Physiol., 301: R1207-R1228.
CrossRef  |  Direct Link  |  

60:  Odom, T.W., P.C. Harrison and W.G. Bottje, 1986. Effects of thermal-induced respiratory alkalosis on blood ionized calcium levels in the domestic hen. Poult. Sci., 65: 570-573.
CrossRef  |  PubMed  |  Direct Link  |  

61:  Oka, T., K. Oka and T. Hori, 2001. Mechanisms and mediators of psychological stress-induced rise in core temperature. Psychosomatic Med., 63: 476-486.
Direct Link  |  

62:  Ostberg, J.R., C. Gellin, R. Patel and E.A. Repasky, 2001. Regulatory potential of fever-range whole body hyperthermia on Langerhans cells and lymphocytes in an antigen-dependent cellular immune response. J. Immunol., 167: 2666-2670.
Direct Link  |  

63:  Pirkkala, L., P. Nykanen and L. Sistonen, 2001. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J., 15: 1118-1131.
CrossRef  |  Direct Link  |  

64:  Puthpongsiriporn, U., S.E. Scheideler, J.L. Sell and M.M. Beck, 2001. Effects of vitamin E and C supplementation on performance, In vitro lymphocyte proliferation and antioxidant status of laying hens during heat stress. Poult. Sci., 80: 1190-1200.
CrossRef  |  PubMed  |  Direct Link  |  

65:  Quinteiro-Filho, W.M., A. Ribeiro, V. Ferraz-de-Paula, M.L. Pinheiro and M. Sakai et al., 2010. Heat stress impairs performance parameters, induces intestinal injury and decreases macrophage activity in broiler chickens. Poult. Sci., 89: 1905-1914.
CrossRef  |  PubMed  |  Direct Link  |  

66:  Reddan, J.R., F.J. Giblin, M. Sevilla, V. Padgaonkar and D.C. Dziedzic et al., 2003. Propyl gallate is a superoxide dismutase mimic and protects cultured lens epithelial cells from H2O2 insult. Exp. Eye Res., 76: 49-59.
PubMed  |  

67:  Rozenboim, I., E. Tako, O. Gal-Garber, J.A. Proudman and Z. Uni, 2007. The effect of heat stress on ovarian function of laying hens. Poult. Sci., 86: 1760-1765.
CrossRef  |  Direct Link  |  

68:  Sahin, K., M. Onderci, N. Sahin, M.F. Gursu and O. Kucuk, 2003. Dietary vitamin C and folic acid supplementation ameliorates the detrimental effects of heat stress in Japanese quail. J. Nutr., 133: 1882-1886.
PubMed  |  Direct Link  |  

69:  Sasse, A., P. Colindres and M.S. Brewer, 2009. Effect of natural and synthetic antioxidants on the oxidative stability of cooked, frozen pork patties. J. Food Sci., 74: S30-S35.
CrossRef  |  Direct Link  |  

70:  Calabotta, D.F. and W.D. Shermer, 1985. Controlling feed oxidation can be rewarding. Feedstuffs, 57: 24-32.

71:  Singh, N., A.K. Dhalla, C. Seneviratne and P.K. Singal, 1995. Oxidative Stress and Heart Failure. In: Cellular Interactions in Cardiac Pathophysiology, Slezak, J. and A. Ziegelhoffer (Eds.). Springer, New York, USA., ISBN-13: 9781461358282, pp: 77-81.

72:  Sorger, P.K., 1991. Heat shock factor and the heat shock response. Cell, 65: 363-366.
PubMed  |  

73:  Spurlock, M.E. and J.E. Savage, 1993. Effect of dietary protein and selected antioxidants on fatty liver hemorrhagic syndrome induced in Japanese quail. Poult. Sci., 72: 2095-2105.
CrossRef  |  Direct Link  |  

74:  Stadtman, E.R. and C.N. Oliver, 2005. Metal-catalyzed oxidation of proteins. Physiological consequences. J. Biol. Chem., 266: 2005-2008.
PubMed  |  Direct Link  |  

75:  Sujatha, V., J.P. Korde, S.K. Rastogi, S. Maini, K. Ravikanth and D.S. Rekhe, 2010. Amelioration of heat stress induced disturbances of the antioxidant defense system in broilers. J. Vet. Med. Anim. Health, 2: 18-28.
Direct Link  |  

76:  Taniguchi, N., A. Ohtsuka and K. Hayashi, 1999. Effect of dietary corticosterone and vitamin E on growth and oxidative stress in broiler chickens. Anim. Sci. J., 7: 195-200.

77:  Tavarez, M.A., D.D. Boler, K.N. Bess, J. Zhao and F. Yan et al., 2011. Effect of antioxidant inclusion and oil quality on broiler performance, meat quality and lipid oxidation. Poult. Sci., 90: 922-930.
CrossRef  |  PubMed  |  Direct Link  |  

78:  Teeter, R.G., M.O. Smith, F.N. Owens, S.C. Arp, S. Sangiah and J.E. Breazile, 1985. Chronic heat stress and respiratory alkalosis: Occurrence and treatment in broiler chicks. Poult. Sci., 64: 1060-1064.
CrossRef  |  PubMed  |  

79:  Thomas, M.J., 2000. The role of free radicals and antioxidants. Nutrition, 16: 716-718.
CrossRef  |  PubMed  |  

80:  Tian, S., Y. Gan, J. Li, L. Wang and J. Shen et al., 2011. Imbalance of glomerular VEGF-NO axis in diabetic rats: Prevention by chronic therapy with propyl gallate. J. Nephrol., 24: 499-506.
Direct Link  |  

81:  Valko, M., D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur and J. Telser, 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39: 44-84.
CrossRef  |  PubMed  |  Direct Link  |  

82:  Vazquez-Anon, M. and T. Jenkins, 2007. Effects of feeding oxidized fat with or without dietary antioxidants on nutrient digestibility, microbial nitrogen and fatty acid metabolism. J. Dairy Sci., 90: 4361-4367.
CrossRef  |  Direct Link  |  

83:  Vazquez-Anon, M. , J. Nocek, G. Bowman, T. Hampton, C. Atwell, P. Vazquez and T. Jenkins, 2008. Effects of feeding a dietary antioxidant in diets with oxidized fat on lactation performance and antioxidant status of the cow. J. Dairy Sci., 91: 3165-3172.
CrossRef  |  

84:  Wang, S. and F.W. Edens, 1998. Heat conditioning induces heat shock proteins in broiler chickens and turkey poults. Poult Sci., 77: 1636-1645.
CrossRef  |  PubMed  |  

85:  Wang, Y.M., J.H. Wang, C. Wang, B. Chen and J.X. Liu et al., 2010. Effect of different rumen-inert fatty acids supplemented with a dietary antioxidant on performance and antioxidative status of early-lactation cows. J. Dairy Sci., 93: 3738-3745.
CrossRef  |  Direct Link  |  

86:  Yahav, S., 2000. Domestic fowl-strategies to confront environmental conditions. Avian Poult. Biol. Rev., 11: 81-95.
Direct Link  |  

87:  Yahav, S., A. Shamay, G. Horev, D. Bar-ilan, O. Genina and M. Friedman-Einat, 1997. Effect of acquisition of improved thermotolerance on the induction of heat shock proteins in broiler chickens. Poult. Sci., 76: 1428-1434.
CrossRef  |  PubMed  |  Direct Link  |  

88:  Yahav, S., D. Shinder, V. Razpakovski, M. Rusal and A. Bar, 2000. Lack of response of laying hens to relative humidity at high ambient temperature. Br. Poult. Sci., 41: 660-663.
CrossRef  |  PubMed  |  Direct Link  |  

89:  Zulkifli, I., A. Al-Aqil, A.R. Omar, A.Q. Sazili and M.A. Rajion, 2009. Crating and heat stress influence blood parameters and heat shock protein 70 expression in broiler chickens showing short or long tonic immobility reactions. Poult. Sci., 88: 471-476.
CrossRef  |  Direct Link  |  

©  2021 Science Alert. All Rights Reserved