Subscribe Now Subscribe Today
Research Article
 

Development of Chymase Inhibitor as a Potent Agent for Preventing Vascular Diseases



Shinji Takai , Denan Jin , Michiko Muramatsu and Mizuo Miyazaki
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Chymase activates not only angiotensin I to angiotensin II but also pro-matrix metalloproteinase-9 to matrix metalloproteinase-9. A clinical trial of an angiotensin II receptor blocker for preventing restenosis after percutaneous coronary intervention was successful, but that of an angiotensin-converting enzyme inhibitor was not. After balloon injury in dog arteries, chymase activity was significantly increased in the injured artery and a chymase inhibitor and an angiotensin II receptor blocker were effective in preventing the vascular proliferation, but an angiotensin-converting enzyme inhibitor was ineffective. In dog grafted veins, chymase activity and angiotensin II concentration along with vascular proliferation were significantly increased, while they were significantly suppressed by a chymase inhibitor. In human and animal atherosclerosis, chymase activity and mRNA level were also significantly increased, whereas a chymase inhibitor suppressed the atherosclerosis in a hamster model. Although both angiotensin II and matrix metalloproteinase-9 are thought to be closely involved in the pathogenesis of abdominal aortic aneurysms, a chymase inhibitor significantly suppressed not only chymase activity but also aneurysms in a hamster aneurysmal model. Both angiotensin II and matrix metalloproteinase-9 are also induced the development of angiogenesis, but chymase inhibition results in suppressing the angiogenesis in experimental animal models. Thus, chymase may become a very important target for preventing vascular diseases.

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Shinji Takai , Denan Jin , Michiko Muramatsu and Mizuo Miyazaki , 2005. Development of Chymase Inhibitor as a Potent Agent for Preventing Vascular Diseases. International Journal of Pharmacology, 1: 281-286.

DOI: 10.3923/ijp.2005.281.286

URL: https://scialert.net/abstract/?doi=ijp.2005.281.286

REFERENCES

1:  De Young, M.B., E.F. Nemeth and A. Scarpa, 1987. Measurement of the internal pH of mast cell granules using microvolumetric fluorescence and isotopic techniques. Arch. Biochem. Biophys., 254: 222-233.
PubMed  |  Direct Link  |  

2:  McEuen, A.R., B. Sharma and A.F. Walls, 1995. Regulation of the activity of human chymase during storage and release from mast cells: The contributions of inorganic cations, pH, heparin and histamine. Biochim. Biophys. Acta, 1267: 115-121.
PubMed  |  Direct Link  |  

3:  Takai, S., N. Shiota, D. Jin and M. Miyazaki, 1998. Functional role of chymase in angiotensin II formation in human vascular tissue. J. Cardiovasc. Pharmacol., 32: 826-833.
Direct Link  |  

4:  Takai, S., D. Jin, M. Sakaguchi and M. Miyazaki, 1999. Chymase-dependent angiotensin II formation in human vascular tissue. Circulation, 100: 654-658.
PubMed  |  Direct Link  |  

5:  Urata, H., A. Kinoshita, K.S. Misono, F.M. Bumpus and A. Husain, 1990. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J. Biol. Chem., 265: 22348-22357.
PubMed  |  Direct Link  |  

6:  Takai, S., N. Shiota, M. Sakaguchi, H. Muraguchi, E. Matsumura and M. Miyazaki, 1997. Characterization of chymase from human vascular tissues. Clin. Chim. Acta, 265: 13-20.
CrossRef  |  Direct Link  |  

7:  Takai, S., N. Shiota, D. Yamamoto, H. Okunishi and M. Miyazaki, 1996. Purification and characterization of angiotensin II-generating chymase from hamster cheek pouch. Life Sci., 58: 591-597.
CrossRef  |  Direct Link  |  

8:  Takai, S., N. Shiota, S. Kobayashi, E. Matsumura and M. Miyazaki, 1997. Induction of chymase that forms angiotensin II in the monkey atherosclerotic aorta. FEBS Lett., 412: 86-90.
CrossRef  |  

9:  Caughey, G.H., W.W. Raymond and P.J. Wolters, 2000. Angiotensin II generation by mast cell alpha-and beta-chymases. Biochim. Biophys. Acta, 1480: 245-257.
PubMed  |  Direct Link  |  

10:  Guo, C., H. Ju, D. Leung, H. Massaeli, M. Shi and M. Rabinovitch, 2001. A novel vascular smooth muscle chymase is upregulated in hypertensive rats. J. Clin. Invest., 107: 703-715.
CrossRef  |  PubMed  |  Direct Link  |  

11:  Saito, K., T. Muto, Y. Tomimori, S. Imajo, H. Maruoka, T. Tanaka, K. Yamashiro and Y. Fukuda, 2003. Mouse mast cell protease-1 cleaves angiotensin I to form angiotensin II. Biochem. Biophys. Res. Commun., 302: 773-777 .
CrossRef  |  Direct Link  |  

12:  Lundequist, A., E. Tchougounova, M. Abrink and G. Pejler, 2004. Cooperation between mast cell carboxypeptidase A and the chymase mouse mast cell protease 4 in the formation and degradation of angiotensin II. J. Biol. Chem., 279: 32339-32344.
Direct Link  |  

13:  Kim, S. and H. Iwao, 2000. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol. Rev., 52: 11-34.
Direct Link  |  

14:  Peters, S., B. Gotting, M. Trummel, H. Rust and A. Brattstrom, 2001. Valsartan for prevention of restenosis after stenting of type B2/C lesions: The VAL-PREST trial. J. Invasive. Cardiol., 13: 93-97.
PubMed  |  Direct Link  |  

15:  Mercator Study Group, 1992. Dose the new angiotensin converting enzyme inhibitor cilazapril prevent restenosis after percutaneous transluminal coronary angioplasty?. Circulation, 86: 100-110.

16:  Fang, K.C., W.W. Raymond, J.L. Blount and G.H. Caughey, 1997. Dog mast cell alpha-chymase activates progelatinase B by cleaving the Phe88-Gln89 and Phe91-Glu92 bonds of the catalytic domain. J. Biol. Chem., 272: 25628-25635.

17:  Fang, K.C., W.W. Raymond, S.C. Lazarus and G.H. Caughey, 1996. Dog mastocytoma cells secrete a 92-kD gelatinase activated extracellularly by mast cell chymase. J. Clin. Invest., 97: 1589-1596.

18:  Tchougounova, E., A. Lundequist, I. Fajardo, J.O. Winberg, M. Abrink and G. Pejler, 2005. A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and -2. J. Biol. Chem., 280: 9291-9296.

19:  Peters, S., M. Trummel, W. Meyners, B. Koehler and K. Westermann, 2005. Valsartan versus ACE inhibition after bare metal stent implantation-results of the Valvace trial. Int. J. Cardiol., 98: 331-335.
CrossRef  |  Direct Link  |  

20:  Takai, S., H. Sakonjo, K. Fukuda, D. Jin and M. Sakaguchi et al., 2003. A novel chymase inhibitor, 2-(5-formylamino-6-oxo-2-phenyl-1,6-dihydropyrimidine-1-yl)-N-[[,4-dioxo-1-phenyl-7-(2pyridyloxy)]2-heptyl]acetamide (NK3201), suppressed intimal hyperplasia after balloon injury. J. Pharmacol. Exp. Ther., 304: 841-844.

21:  Miyazaki, M., N. Shiota, H. Sakonjo and S. Takai, 1999. Angiotensin II type 1 receptor antagonist, TCV-116, prevents neointima formation in injured arteries in the dog. Jpn. J. Pharmacol., 79: 455-460.
Direct Link  |  

22:  Miyazaki, M., T. Wada, N. Shiota and S. Takai, 1999. Effect of an angiotensin II receptor antagonist, candesartan cilexetil, on canine intima hyperplasia after balloon injury. J. Hum. Hypertens, 1999: S21-S25.
PubMed  |  

23:  Fuchs, J.C., J.S. Mitchener and P.O. Hagen, 1978. Postoperative changes in autologous vein grafts. Ann. Surg., 188: 1-15.
PubMed  |  Direct Link  |  

24:  Lytle, B.W., F.D. Loop, D.M. Cosgrove, N.B. Ratliff, K. Easley and P.C. Taylor, 1985. Long-term (5 to 12 years) serial studies of internal mammary artery and saphenous vein coronary bypass grafts. J. Thorac. Cardiovasc. Surg., 89: 248-258.
Direct Link  |  

25:  Nishimoto, M., S. Takai, Y. Sawada, A. Yuda and K. Kondo et al., 2001. Chymase-dependent angiotensin II formation in the saphenous vein versus the internal thoracic artery. J. Thorac. Cardiovasc. Surg., 121: 729-734.
CrossRef  |  Direct Link  |  

26:  Borland, J.A., A.H. Chester, S. Crabbe, J.B. Parkerson, J.D. Catravas and M.H. Yacoub, 1998. Differential action of angiotensin II and activity of angiotensin-converting enzyme in human bypass grafts. J. Thorac. Cardiovasc. Surg., 116: 206-212.
Direct Link  |  

27:  Takai, S., A. Yuda, D. Jin, M. Nishimoto, M. Sakagichi, S. Sasaki and M. Miyazaki, 2000. Inhibition of chymase reduces vascular proliferation in dog grafted veins. FEBS Lett., 467: 141-144.
CrossRef  |  Direct Link  |  

28:  Nishimoto, M., S. Takai, S. Kim, D. Jin and A. Yuda et al., 2001. Significance of chymase-dependent angiotensin II-forming pathway in the development of vascular proliferation. Circulation, 104: 1274-1279.
Direct Link  |  

29:  Sauvage, L.R., H.D. Wu, T.E. Kowalsky, C.C. Davis and J.C. Smith et al., 1986. Healing basis and surgical techniques for complete revascularization of the left ventricle using only the internal mammary arteries. Ann. Thorac. Surg., 42: 449-465.
Direct Link  |  

30:  Tsunemi, K., S. Takai, M. Nishimoto, A. Yuda and D. Jin et al., 2002. Lengthy suppression of vascular proliferation by a chymase inhibitor in dog grafted veins. J. Thorac. Cardiovasc. Surg., 124: 621-625.
PubMed  |  Direct Link  |  

31:  Takai, S., D. Jin, M. Nishimoto, A. Yuda and M. Sakaguchi et al., 2001. Oral administration of a specific chymase inhibitor, NK3201, inhibits vascular proliferation in grafted vein. Life Sci., 69: 1725-1732.
CrossRef  |  Direct Link  |  

32:  Takai, S., D. Jin, M. Sakaguchi and M. Miyazaki, 2004. A single treatment with a specific chymase inhibitor, TY-51184, prevents vascular proliferation in canine grafted veins. J. Pharmacol. Sci., 94: 443-448.
Direct Link  |  

33:  Kaartinen, M., A. Penttila and P.T. Kovanen, 1994. Mast cells of two types differing in neutral protease composition in the human aortic intima. Demonstration of tryptase- and tryptase/chymase-containing mast cells in normal intimas, fatty streaks and the shoulder region of atheromas. Arterioscler. Thromb., 14: 966-972.
PubMed  |  Direct Link  |  

34:  Ortlepp, J.R., U. Janssens, F. Bleckmann, J. Lauscher, S. Merkelbach-Bruse, P. Hanrath and R. Hoffmann, 2001. A chymase gene variant is associated with atherosclerosis in venous coronary artery bypass grafts. Coron. Artery Dis., 12: 493-497.
PubMed  |  Direct Link  |  

35:  Uehara, Y., H. Urata, M. Ideishi, K. Arakawa and K. Saku, 2002. Chymase inhibition suppresses high-cholesterol diet-induced lipid accumulation in the hamster aorta. Cardiovasc. Res., 55: 870-876.
Direct Link  |  

36:  Miyazaki, M., H. Sakonjo and S. Takai, 1999. Anti-atherosclerotic effects of an angiotensin converting enzyme inhibitor and an angiotensin II antagonist in Cynomolgus monkeys fed a high-cholesterol diet. Br. J. Pharmacol., 128: 523-529.
CrossRef  |  PubMed  |  Direct Link  |  

37:  Strawn, W.B., M.C. Chappell, R.H. Dean, S. Kivlighn and C.M. Ferrario, 2000. Inhibition of early atherogenesis by losartan in monkeys with diet-induced hypercholesterolemia. Circulation, 101: 1586-1593.
Direct Link  |  

38:  Takai, S., S. Kim, H. Sakonjo and M. Miyazaki, 2003. Mechanisms of angiotensin II type 1 receptor blocker for anti-atherosclerotic effect in monkeys fed a high-cholesterol diet. J. Hypertens., 21: 361-369.
PubMed  |  Direct Link  |  

39:  Thompson, R.W., 1996. Basic science of abdominal aortic aneurysms: Emerging therapeutic strategies for an unresolved clinical problem. Curr. Opin. Cardiol., 11: 504-518.
PubMed  |  Direct Link  |  

40:  White, J.V., K. Haas, S. Phillips and A.J. Comerota, 1993. Adventitial elastolysis is a primary event in aneurysm formation. J. Vasc. Surg., 17: 371-380.
PubMed  |  Direct Link  |  

41:  Uehara, Y., H. Urata, M. Sasaguri, M. Ideishi and N. Sakata et al., 2000. Increased chymase activity in internal thoracic artery of patients with hypercholesterolemia. Hypertension, 35: 55-60.
Direct Link  |  

42:  Nishimoto, M., S. Takai, H. Fukumoto, K. Tsunemi and A. Yuda et al., 2002. Increased local angiotensin II formation in aneurysmal aorta. Life Sci., 71: 2195-2205.
CrossRef  |  Direct Link  |  

43:  Tsunemi, K., S. Takai, M. Nishimoto, A. Yuda and S. Hasegawa et al., 2002. Possible roles of angiotensin II-forming enzymes, angiotensin converting enzyme and chymase-like enzyme, in the human aneurysmal aorta. Hypertens. Res., 25: 817-822.
PubMed  |  Direct Link  |  

44:  Hernandez-Presa, M., C. Bustos, M. Ortego, J. Tunon, G. Renedo, M. Ruiz-Ortega and J. Egido, 1997. Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-κB activation, monocyte chemoattractant protein-1 expression and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation, 95: 1532-1541.
Direct Link  |  

45:  Schieffer, B., E. Schieffer, D. Hilfiker-Kleiner, A. Hilfiker, P.T. Kovanen, M. Kaartinen, J. Nussberger, W. Harringer and H. Drexler, 2000. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: Potential implications for inflammation and plaque instability. Circulation, 101: 1372-1378.
PubMed  |  Direct Link  |  

46:  Collins, T., M.A. Read, A.S. Neish, M.Z. Whitley, D. Thanos and T. Maniatis, 1995. Transcriptional regulation of endothelial cell adhesion molecules: NF-κB and cytokine-inducible enhancers. FASEB J., 9: 899-909.

47:  Chen, X.L., P.E. Tummala, M.T. Olbrych, R.W. Alexander and R.M. Medford, 1998. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ. Res., 83: 952-959.
PubMed  |  Direct Link  |  

48:  Mabuchi, T., K. Kitagawa, T. Ohtsuki, K. Kuwabara, Y. Yagita, T. Yanagihara, M. Hori and M. Matsumoto, 2000. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke, 31: 1735-1743.

49:  Kato, S., V.A. Luyckx, M. Ots, K.W. Lee, F. Ziai, J.L. Troy, B.M. Brenner and H.S. MacKenzie, 1999. Renin-angiotensin blockade lowers MCP-1 expression in diabetic rats. Kidney Int., 56: 1037-1048.
PubMed  |  Direct Link  |  

50:  Hilgers, K.F., A. Hartner, M. Porst, M. Mai and M. Wittmann et al., 2000. Monocyte chemoattractant protein-1 and macrophage infiltration in hypertensive kidney injury. Kidney Int., 58: 2408-2419.
CrossRef  |  Direct Link  |  

51:  Daugherty, A., M.W. Manning and L.A. Cassis, 2000. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Invest., 105: 1605-1612.
PubMed  |  Direct Link  |  

52:  Daugherty, A., M.W. Manning and L.A. Cassis, 2001. Antagonism of AT2 receptors augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. Br. J. Pharmacol., 134: 865-870.
CrossRef  |  PubMed  |  Direct Link  |  

53:  Moore, G., S. Liao, J.A. Curci, B.C., Starcher and R.L. Martin et al., 1999. Suppression of experimental abdominal aortic aneurysms by systemic treatment with a hydroxamate-based matrix metalloproteinase inhibitor (RS 132908). J. Vasc. Surg., 29: 522-532.
PubMed  |  Direct Link  |  

54:  Pyo, R., J.K. Lee, J.M. Shipley, J.A. Curci and D. Mao et al., 2000. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J. Clin. Invest., 105: 1641-1649.
CrossRef  |  PubMed  |  Direct Link  |  

55:  Tsunemi, K., S. Takai, M. Nishimoto, D. Jin and M. Sakaguchi et al., 2004. A specific chymase inhibitor, 2-(5-formylamino-6-oxo-2-phenyl-1,6-dihydropyrimidine-1-yl)-N-[[3,4-dioxo-1-phenyl- 7-(2-pyridyloxy)]-2-heptyl]acetamide (NK3201), suppresses development of abdominal aortic aneurysm in hamsters. J. Pharmacol. Exp. Ther., 309: 879-883.
CrossRef  |  Direct Link  |  

56:  Fujiyama, S., H. Matsubara, T. Nozawa, K. Maruyama and Y. Mori et al., 2001. Angiotensin AT1 and AT2 receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF)-mediated EGF receptor transactivation. Circ. Res., 88: 22-29.
PubMed  |  Direct Link  |  

57:  Emanueli, C., M.B. Salis, T. Stacca, A. Pinna, L. Gaspa and P. Madeddu, 2002. Angiotensin AT1 receptor signalling modulates reparative angiogenesis induced by limb ischaemia. Br. J. Pharmacol., 135: 87-92.
CrossRef  |  PubMed  |  Direct Link  |  

58:  Sasaki, K., T. Murohara, H. Ikeda, T. Sugaya, T. Shimada, S. Shintani and T.Imaizumi, 2002. Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. J. Clin. Invest., 109: 603-611.
PubMed  |  Direct Link  |  

59:  Fujita, M., I. Hayashi, S. Yamashina, A. Fukamizu, M. Itoman and M. Majima, 2005. Angiotensin type 1a receptor signaling-dependent induction of vascular endothelial growth factor in stroma is relevant to tumor-associated angiogenesis and tumor growth. Carcinogenesis, 26: 271-279.
CrossRef  |  Direct Link  |  

60:  Fujita, M., I. Hayashi, S. Yamashina, M. Itoman and M. Majima, 2002. Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis and metastasis. Biochem. Biophys. Res. Commun., 294: 441-447.
PubMed  |  Direct Link  |  

61:  Muramatsu, M., J. Katada, I. Hayashi and M. Majima, 2000. Chymase as a proangiogenic factor. A possible involvement of chymase-angiotensin-dependent pathway in the hamster sponge angiogenesis model. J. Biol. Chem., 275: 5545-5552.
Direct Link  |  

62:  Muramatsu, M., M. Yamada, S. Takai and M. Miyazaki, 2002. Suppression of basic fibroblast growth factor-induced angiogenesis by a specific chymase inhibitor, BCEAB, through the chymase-angiotensin-dependent pathway in hamster sponge granulomas. Br. J. Pharmacol., 137: 554-560.
CrossRef  |  PubMed  |  Direct Link  |  

©  2021 Science Alert. All Rights Reserved