Subscribe Now Subscribe Today
Abstract
Fulltext PDF
References
Research Article
 
Inhibitory Effect of Apelin on Cardiomyocyte Hypertrophy induced by Resistin in H9c2 Cells



Jianwei Luo, Huzi Liu, Xian Zheng, Bin Lin, Qunhui Ye, Yongzhi Deng and Lin Wu
 
ABSTRACT

Background and Objective: Resistin induces cardiac hypertrophy, while apelin inhibits cardiac hypertrophy. But the underlying molecular mechanisms are still not clear that apelin inhibits cardiac hypertrophy induced by resistin. The research purpose was to investigate the underlying molecular mechanism that apelin represses resistin-induced cardiomyocyte hypertrophy. Materials and Methods: H9c2 cells were used to measure surface area of cells and protein synthesis. RT-qPCR was performed to analyze hypertrophic marker brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) mRNA expression. Western blot was employed to examine phosphorylation of LKB1 and AMPK. Results: The results displayed that cell surface area, protein synthesis, BNP and β-MHC mRNA expressions were increased with resistin treatment. While apelin reversed these effects of resistin and this was further blocked by the electrophilic aldehyde lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE). Furthermore, resistin decreased phosphorylation of LKB1and AMPK, whereas pre-cultured with apelin increased phosphorylation of LKB1and AMPK that was decreased by resistin, which was blocked by HNE. Conclusion: These results suggested that apelin can inhibit cardiomyocyte hypertrophy induced by resistin through the activation of LKB1/AMPK cell signaling pathway.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
Received: October 15, 2018; Accepted: November 13, 2018; Published: February 13, 2019

REFERENCES
Ashley, E.A., J. Powers, M. Chen, R. Kundu and T. Finsterbach et al., 2005. The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc. Res., 65: 73-82.
CrossRef  |  Direct Link  |  

Bokarewa, M., I. Nagaev, L. Dahlberg, U. Smith and A. Tarkowski, 2005. Resistin, an adipokine with potent proinflammatory properties. J. Immunol., 174: 5789-5795.
CrossRef  |  Direct Link  |  

Calamaras, T.D., C. Lee, F. Lan, Y. Ido, D.A. Siwik and W.S. Colucci, 2015. The lipid peroxidation product 4-hydroxy-trans-2-nonenal causes protein synthesis in cardiac myocytes via activated mTORC1-p70S6K-RPS6 signaling. Free Radical Biol. Med., 82: 137-146.
CrossRef  |  Direct Link  |  

Ceylanisik, A.F., M.R. Kandadi, X. Xu, Y. Hua, A.J. Chicco, J. Ren and S. Nair, 2013. Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J. Mol. Cell. Cardiol., 63: 4-13.
CrossRef  |  Direct Link  |  

Chemaly, E.R., L. Hadri, S. Zhang, M. Kim and E. Kohlbrenner et al., 2011. Long-term in vivo resistin overexpression induces myocardial dysfunction and remodeling in rats. J. Mol. Cell. Cardiol., 51: 144-155.
CrossRef  |  Direct Link  |  

Chen, Y.H., P.F. Hung and Y.H. Kao, 2005. IGF-I downregulates resistin gene expression and protein secretion. Am. J. Physiol.-Endocrinol. Metab., 288: E1019-E1027.
CrossRef  |  Direct Link  |  

Cheng, C.I., Y.H. Lee, P.H. Chen, Y.C. Lin, M.H. Chou and Y.H. Kao, 2017. Cobalt chloride induces RhoA/ROCK activation and remodeling effect in H9c2 cardiomyoblasts: Involvement of PI3K/Akt and MAPK pathways. Cell. Signall., 36: 25-33.
CrossRef  |  Direct Link  |  

Dolinsky, V.W., A.Y.M. Chan, I.R. Frayne, P.E. Light, C.D. Rosiers and J.R.B. Dyck, 2009. Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. Circulation, 119: 1643-1652.
CrossRef  |  PubMed  |  Direct Link  |  

Foussal, C., O. Lairez, D. Calise, A. Pathak and C. Guilbeau-Frugier et al., 2010. Activation of catalase by apelin prevents oxidative stress-linked cardiac hypertrophy. FEBS Lett., 584: 2363-2370.
CrossRef  |  Direct Link  |  

Fujita, H., H. Fujishima, T. Morii, J. Koshimura, T. Narita, M. Kakei and S. Ito, 2002. Effect of metformin on adipose tissue resistin expression in db/db mice. Biochem. Biophys. Res. Commun., 298: 345-349.
CrossRef  |  Direct Link  |  

Hussain, S., M. Asghar and Q. Javed, 2010. Resistin gene promoter region polymorphism and the risk of hypertrophic cardiomyopathy in patients. Transl. Res., 155: 142-147.
CrossRef  |  Direct Link  |  

Kang, S., E.R. Chemaly, R.J. Hajjar and D. Lebeche, 2011. Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) and c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathways. J. Biol. Chem., 286: 18465-18473.
CrossRef  |  Direct Link  |  

Kim, M., J.K. Oh, S. Sakata, I. Liang, W. Park, R.J. Hajjar and D. Lebeche, 2008. Role of resistin in cardiac contractility and hypertrophy. J. Mol. Cell. Cardiol., 45: 270-280.
CrossRef  |  Direct Link  |  

Koguchi, W., N. Kobayashi, H. Takeshima, M. Ishikawa, F. Sugiyama and T. Ishimitsu, 2012. Cardioprotective effect of apelin-13 on cardiac performance and remodeling in end-stage heart failure. Circ. J., 76: 137-144.
CrossRef  |  PubMed  |  Direct Link  |  

Kuba, K., L. Zhang, Y. Imai, S. Arab and M. Chen et al., 2007. Impaired heart contractility in apelin gene-deficient mice associated with aging and pressure overload. Circulation Res., 101: 32-42.
CrossRef  |  Direct Link  |  

Li, L., H. Zeng and J.X. Chen, 2012. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 303: H605-H618.
CrossRef  |  Direct Link  |  

Liu, P., G.C. Cheng, Q.H. Ye, Y.Z. Deng and L. Wu, 2016. Lkb1/ampk pathway mediates resistin-induced cardiomyocyte hypertrophy in h9c2 embryonic rat cardiomyocytes. Biomed. Rep., 4: 387-391.
CrossRef  |  Direct Link  |  

Maguire, J.J., M.J. Kleinz, S.L. Pitkin and A.P. Davenport, 2009. [Pyr1] apelin-13 identified as the predominant apelin isoform in the human heart: Vasoactive mechanisms and inotropic action in disease. Hypertension, 54: 598-604.
CrossRef  |  Direct Link  |  

Muse, E.D., S. Obici, S. Bhanot, B.P. Monia and R.A. McKay et al., 2004. Role of resistin in diet-induced hepatic insulin resistance. J. Clin. Investig., 114: 232-239.
CrossRef  |  Direct Link  |  

Pchejetski, D., C. Foussal, C. Alfarano, O. Lairez and D. Calise et al., 2012. Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur. Heart J., 33: 2360-2369.
CrossRef  |  Direct Link  |  

Rothwell, S.E., A.M. Richards and C.J. Pemberton, 2006. Resistin worsens cardiac ischaemia-reperfusion injury. Biochem. Biophys. Res. Commun., 349: 400-407.
CrossRef  |  Direct Link  |  

Schwartz, D.R. and M.A. Lazar, 2011. Human resistin: Found in translation from mouse to man. Trends Endocrinol. Metab., 22: 259-265.
CrossRef  |  Direct Link  |  

Steppan, C.M. and M.A. Lazar, 2004. The current biology of resistin. J. Internal Med., 225: 439-447.
CrossRef  |  Direct Link  |  

Steppan, C.M., S.T. Bailey, S. Bhat, E.J. Brown and R.R. Banerjee et al., 2001. The hormone resistin links obesity to diabetes. Nature, 409: 307-312.
CrossRef  |  Direct Link  |  

Tang, Y.C., C.W. Liu, H.H. Chang, C.C. Juan and Y.C. Kuo et al., 2014. Endothelin-1 stimulates resistin gene expression. Endocrinology, 155: 854-864.
CrossRef  |  Direct Link  |  

Tao, J., W. Zhu, Y. Li, P. Xin and J. Li et al., 2011. Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Tao, J., W. Zhu, Y. Li, P. Xin and J. Li et al.,2011. Apelin-13 protects the heart against is 301: H1471-H1486.
CrossRef  |  Direct Link  |  

Tham, Y.K., B.C. Bernardo, J.Y. Ooi, K.L. Weeks and J.R. McMullen, 2015. Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Arch. Toxicol., 89: 1401-1438.
CrossRef  |  Direct Link  |  

Wang, W., S.M.K. Mckinnie, V.B. Patel, G. Haddad and Z. Wang et al., 2013. Loss of apelin exacerbates myocardial infarction adverse remodeling and ischemiar-eperfusion injury: Therapeutic potential of synthetic apelin analogues. J. Am. Heart Assoc., Vol. 2, No. 4. 10.1161/JAHA.113.000249

Yang, S., H. Li, L. Tang, G. Ge and J. Ma et al., 2015. Apelin-13 protects the heart against ischemia-reperfusion injury through the RISK-GSK-3β-mPTP pathway. Arch. Med. Sci., 11: 1065-1073.
CrossRef  |  PubMed  |  Direct Link  |  

Yang, Y., R. Sharma, A. Sharma, S. Awasthi and Y.C. Awasthi, 2003. Lipid peroxidation and cell cycle signaling: 4-hydroxynonenal, a key molecule in stress mediated signaling. ACTA Biochimica Polonica-English Edition, 50: 319-336.
Direct Link  |  

Ying, C., S.X. Liu, K.L. Xie, W.L. Zhang and D. Lei et al., 2014. MicroRNA-492 reverses high glucose-induced insulin resistance in HUVEC cells through targeting resistin. Mol. Cell. Biochem., 391: 117-125.
CrossRef  |  Direct Link  |  

©  2019 Science Alert. All Rights Reserved
Fulltext PDF References Abstract