Subscribe Now Subscribe Today
Abstract
Fulltext PDF
References
Review Article
 
Reconsidering a Citrus Flavonoid Naringin as a Promising Nutritional Supplement and its Beneficial Health Applications in Humans, Animals and Poultry



Li Changxing, Muhammad Saeed, Asghar Ali Kamboh, Mahmoud Alagawany, Mohamed E. Abd El-Hack, Muhammad Asif Arain, Daryoush Babazadeh, Kuldeep Dhama and Mo Chenling
 
ABSTRACT

Flavonoids are ubiquitous plant metabolites, constitute an important group of natural compounds with various biologic activities and have been the subject of great interest for scientific research. Citrus flavonoids have been established as an important sub-class of flavonoids. Naringin is a prime example that is a natural flavanone glycoside, found mainly in grapefruits, grapes, tomatoes and citrus fruits as well. Citrus flavanones like naringin play an important role as anti-inflammatory, anti-oxidant, anti-apoptotic, antidepressant, hypolipidemic, immunoregulatory, hepatoprotective, wound healing, anti-diabetic and antihyperglycemic agent. It constitutes a major category of nature-derived bioactive compounds, has potent anti-oxidant and anti-inflammatory effects that render it as a promising dietary supplement in animal and poultry feeds. The use of these natural anti-oxidants can also play a vital role to extend the shelf life and increase the consumers’ acceptability for meat and meat products. Both in vivo and in vitro studies have recognized the worth of naringenin several preclinical models of neurodegenerative disorders, cardiovascular diseases, osteoporosis, atherosclerosis, rheumatological disorders and diabetes mellitus. Moreover, it plays a chief role in lowering cholesterol, triglycerides and improvements in immune functions and anti-oxidant status, as reported in human and different animal model studies. This flavonoid has faced limited research and usage in the poultry production industry, although it has many promising biological effects. So this review paper aims to compile the important biologic activities of this compound in order to promote more studies pertaining to this citrus flavonoid, which could be used as a natural feed additive to improve health and meat quality and its potential to lower medicinal cost in animal and poultry industry.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
Received: December 06, 2017; Accepted: February 08, 2018; Published: January 03, 2018

REFERENCES
Abaza, I.M., M.A. Shehata, M.S. Shoieb and I.I. Hassan, 2008. Evaluation of some natural feed additive in growing chicks diet. Int. J. Poult. Sci., 7: 872-879.
CrossRef  |  Direct Link  |  

Abd El-Hack, M.E., M. Alagawany, M.R. Farag, R. Tiwari and K. Karthik et al., 2016. Beneficial impacts of thymol essential oil on health and production of animals, fish and poultry: A review. J. Essent. Oil Res., 28: 365-382.
CrossRef  |  Direct Link  |  

Alam, M.A., K. Kauter and L. Brown, 2013. Naringin improves diet-induced cardiovascular dysfunction and obesity in high carbohydrate, high fat diet-fed rats. Nutrients, 5: 637-650.
CrossRef  |  Direct Link  |  

Alam, M.A., N. Subhan, M.M. Rahman, S.J. Uddin, H.M. Reza and S.D. Sarker, 2014. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr. Int. Rev. J., 5: 404-417.
CrossRef  |  Direct Link  |  

Ali, M.M., A. Monira and A. El-Kader, 2004. The influence of naringin on the oxidative state of rats with streptozotocin-induced acute hyperglycaemia. Z. Naturforsch. C, 59: 726-733.
Direct Link  |  

Anonymous, 2014. USDA database for the flavonoid content of selected foods, Release 3.1. United States Department of Agriculture. http://www.ars.usda.gov/News/docs.htm?docid=6231.

Bhagwat, S., D.B. Haytowitz and J.M. Holden, 2011. USDA database for the flavonoid content of selected foods, release 3. US Department of Agriculture, Beltsville.

Brenes, A. and E. Roura, 2010. Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed Sci. Technol., 158: 1-14.
CrossRef  |  Direct Link  |  

Cavia-Saiz, M., M.D. Busto, M.C. Pilar-Izquierdo, N. Ortega, M. Perez-Mateos and P. Muniz, 2010. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study. J. Sci. Food Agric., 90: 1238-1244.
CrossRef  |  Direct Link  |  

Chen, S., Y. Ding, W. Tao, W. Zhang, T. Liang and C. Liu, 2012. Naringenin inhibits TNF-α induced VSMC proliferation and migration via induction of HO-1. Food Chem. Toxicol., 50: 3025-3031.
CrossRef  |  Direct Link  |  

Cho, K.W., Y.O. Kim, J.E. Andrade, J.R. Burgess and Y.C. Kim, 2011. Dietary naringenin increases hepatic peroxisome proliferators-activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats. Eur. J. Nutr., 50: 81-88.
CrossRef  |  Direct Link  |  

Choudhury, R., G. Chowrimootoo, K. Srai, E. Debnam and C.A. Rice-Evans, 1999. Interactions of the flavonoid naringenin in the gastrointestinal tract and the influence of glycosylation. Biochem. Biophys. Res. Commun., 265: 410-415.
CrossRef  |  Direct Link  |  

Chtourou, Y., B. Gargouri, M. Kebieche and H. Fetoui, 2015. Naringin abrogates cisplatin-induced cognitive deficits and cholinergic dysfunction through the down-regulation of AChE expression and iNOS signaling pathways in hippocampus of aged rats. J. Mol. Neurosci., 56: 349-362.
CrossRef  |  Direct Link  |  

Cook, N.C. and S. Samman, 1996. Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem., 7: 66-76.
CrossRef  |  Direct Link  |  

Da Silva, R.R., T.T. de Oliveira, T.J. Nagem, A.S. Pinto and L.F. Albino et al., 2001. [Hypocholesterolemic effect of naringin and rutin flavonoids]. Arch. Latinoam. Nutr., 51: 258-264, (In Portuguese).
PubMed  |  Direct Link  |  

Dibner, J.J. and J.D. Richards, 2005. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci., 84: 634-643.
CrossRef  |  Direct Link  |  

Fallahi, F., M. Roghani and S. Moghadami, 2012. Citrus flavonoid naringenin improves aortic reactivity in streptozotocin-diabetic rats. Indian J. Pharmacol., 44: 382-386.
CrossRef  |  Direct Link  |  

Fellenberg, M.A. and H. Speisky, 2006. Antioxidants: Their effects on broiler oxidative stress and its meat oxidative stability. World's Poult. Sci. J., 62: 53-70.
CrossRef  |  Direct Link  |  

Giannenas, I., D. Tontis, E. Tsalie, E. Chronis, D. Doukas and I. Kyriazakis, 2010. Influence of dietary mushroom Agaricus bisporus on intestinal morphology and microflora composition in broiler chickens. Res. Vet. Sci., 89: 78-84.
CrossRef  |  PubMed  |  Direct Link  |  

Goliomytis, M., N. Kartsonas, M.A. Charismiadou, G.K. Symeon, P.E. Simitzis and S.G. Deligeorgis, 2015. The influence of naringin or hesperidin dietary supplementation on broiler meat quality and oxidative stability. PLoS One, Vol. 10. 10.1371/journal.pone.0141652

Gopinath, K. and G. Sudhandiran, 2012. Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience, 227: 134-143.
CrossRef  |  Direct Link  |  

Guan, L.P., J.X. Nan, X.J. Jin, Q.H. Jin, K. Kwak, K.Y. Chai and Z.S. Quan, 2005. Protective effects of chalcone derivatives for acute liver injury in mice. Arch. Pharm. Res., 28: 81-86.
CrossRef  |  Direct Link  |  

Guimaraes, R., L. Barros, J.C.M. Barreira, M.J. Sousa, A.M. Carvalho and I.C.F.R. Ferreira, 2010. Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange. Food Chem. Toxicol., 48: 99-106.
CrossRef  |  Direct Link  |  

Hirai, S., N. Takahashi, T. Goto, S. Lin, T. Uemura, R. Yu and T. Kawada, 2010. Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies. Mediators Inflammation. 10.1155/2010/367838

Horiba, T., I. Nishimura, Y. Nakai, K. Abe and R. Sato, 2010. Naringenin chalcone improves adipocyte functions by enhancing adiponectin production. Mol. Cell. Endocrinol., 323: 208-214.
CrossRef  |  Direct Link  |  

Ikemura, M., Y. Sasaki, J.C. Giddings and J. Yamamoto, 2012. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke‐prone spontaneously hypertensive rats. Phytother. Res., 26: 1272-1277.
CrossRef  |  Direct Link  |  

Jacqueline, M.S., L. Jongsoon and F.P. Paul, 1997. Tumor necrosis factor-α-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J. Biol. Chem., 272: 971-976.
CrossRef  |  Direct Link  |  

Jain, M. and H.S. Parmar, 2011. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflam. Res., 60: 483-491.
CrossRef  |  Direct Link  |  

Jeon, S.M., S.H. Bok, M.K. Jang, Y.H. Kim and K.T. Nam et al., 2002. Comparison of antioxidant effects of naringin and probucol in cholesterol-fed rabbits. Clin. Chim. Acta, 317: 181-190.
CrossRef  |  PubMed  |  Direct Link  |  

Jeon, S.M., Y.B. Park and M.S. Choi, 2004. Antihypercholesterolemic property of naringin alters plasma and tissue lipids, cholesterol-regulating enzymes, fecal sterol and tissue morphology in rabbits. Clin. Nutr., 23: 1025-1034.
CrossRef  |  Direct Link  |  

Jung, U.J., H.J. Kim, J.S. Lee, M.K. Lee and H.O. Kim et al., 2003. Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin. Nutr., 22: 561-568.
CrossRef  |  Direct Link  |  

Jung, U.J., M.K. Lee, K.S. Jeong and M.S. Choi, 2004. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J. Nutr., 134: 2499-2503.
Direct Link  |  

Kamboh, A.A. and W.Y. Zhu, 2013. Effect of increasing levels of bioflavonoids in broiler feed on plasma anti-oxidative potential, lipid metabolites, and fatty acid composition of meat. Poult. Sci., 92: 454-461.
CrossRef  |  PubMed  |  Direct Link  |  

Kamboh, A.A., M.A. Arain, M.J. Mughal, A. Zaman, Z.M. Arain and A.H. Soomro, 2015. Flavonoids: Health promoting phytochemicals for animal production-A review. J. Anim. Health Prod., 3: 6-13.
CrossRef  |  Direct Link  |  

Kandhare, A.D., J. Alam, M.V.K. Patil, A. Sinha and S.L. Bodhankar, 2016. Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats. Pharmaceut. Biol., 54: 419-432.
CrossRef  |  Direct Link  |  

Kandhare, A.D., K.S. Raygude, P. Ghosh and S.L. Bodhankar, 2011. The ameliorative effect of fisetin, a bioflavonoid, on ethanol-induced and pylorus ligation-induced gastric ulcer in rats. Int. J. Green Pharm., 5: 236-243.
Direct Link  |  

Kandhare, A.D., V. Shivakumar, A. Rajmane, P. Ghosh and S.L. Bodhankar, 2014. Evaluation of the neuroprotective effect of chrysin via modulation of endogenous biomarkers in a rat model of spinal cord injury. J. Nat. Med., 68: 586-603.
CrossRef  |  PubMed  |  Direct Link  |  

Lee, E.J., D.I. Kim, W.J. Kim and S.K. Moon, 2009. Naringin inhibits matrix metalloproteinase-9 expression and AKT phosphorylation in tumor necrosis factor-α-induced vascular smooth muscle cells. Mol. Nutr. Food Res., 53: 1582-1591.
CrossRef  |  Direct Link  |  

Li, W.L., H.C. Zheng, J. Bukuru and N. de Kimpe, 2004. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J. Ethnopharmacol., 92: 1-21.
CrossRef  |  PubMed  |  Direct Link  |  

Lin, C.Y., C.C. Ni, M.C. Yin and C.K. Lii, 2012. Flavonoids protect pancreatic β-cells from cytokines mediated apoptosis through the activation of PI3-kinase pathway. Cytokine, 59: 65-71.
CrossRef  |  PubMed  |  Direct Link  |  

Liu, X., N. Wang, S. Fan, X. Zheng and Y. Yang et al., 2016. The citrus flavonoid naringenin confers protection in a murine endotoxaemia model through AMPK-ATF3-dependent negative regulation of the TLR4 signalling pathway. Scient. Rep., Vol. 6. 10.1038/srep39735

Mahmoud, A.M. and O.E. Hussein, 2016. Anti-diabetic effect of Naringin: Insights into the molecular mechanism. Diabetes Obes Int. J., Vol. 1.

Mahmoud, A.M., 2013. Hematological alterations in diabetic rats-role of adipocytokines and effect of citrus flavonoids. Excli J., 12: 647-657.
Direct Link  |  

Mahmoud, A.M., O.M. Ahmed, M.B. Ashour and A. Abdel-Moneim, 2015. In vivo and in vitro antidiabetic effects of citrus flavonoids; a study on the mechanism of action. Int. J. Diabetes Dev. Countries, 35: 250-263.
CrossRef  |  Direct Link  |  

Middleton, Jr. E., C. Kandaswami and T.C. Theoharides, 2000. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease and cancer. Pharmacol. Rev., 52: 673-751.
PubMed  |  Direct Link  |  

Nakajima, V.M., T. Moala, C.S. Moura, J. Amaya-Farfan, A. Gambero, G.A. Macedo and J.A. Macedo, 2017. Biotransformed citrus extract as a source of anti-inflammatory polyphenols: Effects in macrophages and adipocytes. Food Res. Int., 97: 37-44.
CrossRef  |  Direct Link  |  

Neveu, V., J. Perez-Jimenez, F. Vos, V. Crespy and L. du Chaffaut et al., 2009. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database. 10.1093/database/bap024

Ooghe, W.C., S.J. Ooghe, C.M. Detavernier and A. Huyghebaert, 1994. Characterization of orange juice (Citrus sinensis) by flavanone glycosides. J. Agric. Food Chem., 42: 2183-2190.
CrossRef  |  Direct Link  |  

Orayaga, K.T., O.I.A. Oluremi and A.Y. Adenkola, 2016. Effect of water soaking of sweet orange (Citrus sinensis) fruit peels on haematology, carcass yield and internal organs of finisher broiler chickens. J. Anim. Health Prod., 4: 65-71.
CrossRef  |  Direct Link  |  

Pari, L. and K. Amudha, 2011. Hepatoprotective role of naringin on nickel-induced toxicity in male Wistar rats. Eur. J. Pharmacol., 650: 364-370.
CrossRef  |  Direct Link  |  

Parmar, H.S., P. Jain, D.S. Chauhan, M.K. Bhinchar and V. Munjal et al., 2012. DPP-IV inhibitory potential of naringin: An in silico, in vitro and in vivo study. Diabetes Res. Clin. Pract., 97: 105-111.
CrossRef  |  Direct Link  |  

Pu, P., D.M. Gao, S. Mohamed, J. Chen and J. Zhang et al., 2012. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Arch. Biochem. Biophys., 518: 61-70.
CrossRef  |  Direct Link  |  

Punithavathi, V.R., R. Anuthama and P.S.M. Prince, 2008. Combined treatment with naringin and vitamin C ameliorates Streptozotocin-induced diabetes in male Wistar rats. J. Applied Toxicol., 28: 806-813.
CrossRef  |  PubMed  |  Direct Link  |  

Renugadevi, J. and S.M. Prabu, 2009. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology, 256: 128-134.
CrossRef  |  Direct Link  |  

Renugadevi, J. and S.M. Prabu, 2010. Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin. Exp. Toxicol. Pathol., 62: 171-181.
CrossRef  |  Direct Link  |  

Reshef, N., Y. Hayari, C. Goren, M. Boaz, Z. Madar and H. Knobler, 2005. Antihypertensive effect of sweetie fruit in patients with stage I hypertension. Am. J. Hypertens., 18: 1360-1363.
CrossRef  |  Direct Link  |  

Rothwell, J.A., M. Urpi-Sarda, M. Boto-Ordonez, C. Knox and R. Llorach et al., 2012. Phenol-Explorer 2.0: A major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database, Vol. 2012. 10.1093/database/bas031

Saeed, M., A.R. Baloch, M. Wang, R.N. Soomro and A.M. Baloch et al., 2015. Use of cichorium intybus leaf extract as growth promoter, hepatoprotectant and immune modulent in broilers. J. Anim. Prod. Adv., 5: 585-591.
CrossRef  |  Direct Link  |  

Saeed, M., M. Naveed, M.A. Arain, M. Arif and M.E. Abd El-Hack et al., 2017. Quercetin: Nutritional and beneficial effects in poultry. World's Poult. Sci. J., 73: 355-364.
CrossRef  |  Direct Link  |  

Saponara, S., L. Testai, D. Iozzi, E. Martinotti and A. Martelli et al., 2006. (+/−)-Naringenin as large conductance Ca2+-activated K+ (BKCa) channel opener in vascular smooth muscle cells. Br. J. Pharmacol., 149: 1013-1021.
CrossRef  |  Direct Link  |  

Serafini, M., I. Peluso and A. Raguzzini, 2010. Session 1: Antioxidants and the immune system flavonoids as anti-inflammatory agents. Proc. Nutr. Soc., 69: 273-278.
Direct Link  |  

Shin, Y.W., S.H. Bok, T.S. Jeong, K.H. Bae and N.H. Jeoung et al., 1999. Hypocholesterolemic effect of naringin associated with hepatic cholesterol regulating enzyme changes in rats. Int. J. Vitamin Nutr. Res., 69: 341-347.
CrossRef  |  PubMed  |  Direct Link  |  

Shoelson, S.E., L. Herrero and A. Naaz, 2007. Obesity, inflammation and insulin resistance. Gastroenterology, 132: 2169-2180.
CrossRef  |  Direct Link  |  

Toghyani, M., M. Toghyani, A. Gheisari, G. Ghalamkari and A. Eghbalsaied, 2011. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical and haematological parameters in broiler chicks. Livestock Sci., 138: 167-173.
CrossRef  |  Direct Link  |  

Tripoli, E., M. La Guardia, S. Giammanco, D. Di Majo and M. Giammanco, 2007. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem., 104: 466-479.
CrossRef  |  Direct Link  |  

Weisberg, S.P., D. McCann, M. Desai, M. Rosenbaum, R.L. Leibe and A.W. Ferrante Jr., 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Inves., 112: 1796-1808.
CrossRef  |  PubMed  |  Direct Link  |  

Wisse, B.E., 2004. The inflammatory syndrome: The role of adipose tissue cytokines in metabolic disorders linked to obesity. J. Am. Soc. Nephrol., 15: 2792-2800.
CrossRef  |  PubMed  |  Direct Link  |  

Wong, K.C., W.Y. Pang, X.L. Wang, S.K. Mok and W.P. Lai et al., 2013. Drynaria fortunei-derived total flavonoid fraction and isolated compounds exert oestrogen-like protective effects in bone. Br. J. Nutr., 110: 475-485.
CrossRef  |  Direct Link  |  

Xiong, Y., G.F. Wang, J.Y. Zhang, S.Y. Wu and W. Xu et al., 2010. Naringin inhibits monocyte adhesion to high glucose-induced human umbilical vein endothelial cells. Nan Fang Yi Ke Da Xue Xue Bao [J. Southern Med. Univ.], 30: 321-325.
Direct Link  |  

Xu, H., G.T. Barnes, Q. Yang, G. Tan and D. Yang et al., 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest., 112: 1821-1830.
CrossRef  |  PubMed  |  Direct Link  |  

Yang, Y., P.A. Iji and M. Choct, 2009. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World's Poult. Sci. J., 65: 97-114.
CrossRef  |  Direct Link  |  

Yin, L., W. Cheng, Z. Qin, H. Yu and Z. Yu et al., 2015. Effects of naringin on proliferation and osteogenic differentiation of human periodontal ligament stem cells in vitro and in vivo. Stem Cells Int., Vol. 2015. 10.1155/2015/758706

Young, J.F., J. Stagsted, S.K. Jensen, A.H. Karlsson and P. Henckel, 2003. Ascorbic acid, α-tocopherol and oregano supplements reduce stress-induced deterioration of chicken meat quality. Poult. Sci., 82: 1343-1351.
PubMed  |  Direct Link  |  

Yu, Y.H. and H.N. Ginsberg, 2005. Adipocyte signaling and lipid homeostasis: Sequelae of insulin-resistant adipose tissue. Circ. Res., 96: 1042-1052.
CrossRef  |  PubMed  |  Direct Link  |  

Zhang, J., W. Gao, Z. Liu, Z. Zhang and C. Liu, 2014. Systematic analysis of main constituents in rat biological samples after oral administration of the methanol extract of fructus aurantii by HPLC-ESI-MS/MS. Iran. J. Pharm. Res., 13: 493-503.
Direct Link  |  

©  2019 Science Alert. All Rights Reserved
Fulltext PDF References Abstract