• [email protected]
  • +971 507 888 742
Submit Manuscript
SciAlert
  • Home
  • Journals
  • Information
    • For Authors
    • For Referees
    • For Librarian
    • For Societies
  • Contact
  1. Biotechnology
  2. Vol 21 (4), 2022
  3. 171-181
  • Online First
  • Current Issue
  • Previous Issues
  • More Information
    Aims and Scope Editorial Board Guide to Authors Article Processing Charges
    Submit a Manuscript

Biotechnology

Year: 2022 | Volume: 21 | Issue: 4 | Page No.: 171-181
DOI: 10.3923/biotech.2022.171.181
crossmark

Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
Research Article

Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract

Ojochenemi Ejeh Yakubu Ojochenemi  Ejeh Yakubu's LiveDNA, Sunday Ene-Ojo Atawodi and Kayode Adebisi Arowora Kayode  Adebisi Arowora's LiveDNA

ABSTRACT


Background and Objective: Oxidative stress has been an underline cause of many disease conditions which come into play using different mechanistic steps. Antioxidants and other natural mechanisms have been put in place to mitigate the initiation and/or propagation of these mechanisms and further translation to their effects. This study was designed for in vitro assessment of antioxidant claims of the plant and to identify the specific fraction responsible for the acclaimed effects using different methods. Materials and Methods: Fractionation was achieved by column chromatography using solvents of different polarities to obtain fourteen fractions, following which Total Antioxidant Capacity (TAC), Total Flavonoid Contents (TFC), Total Phenolic Content (TPC), β-carotene bleaching inhibition assay, anti-lipid peroxidation inhibition assay and metal-chelating inhibition assay were conducted. Results: Antioxidant activities of fractions expressed in mg mL–1 of Trolox Equivalent (TE). Values ranged from 0.03-0.13 mg mL–1. The total flavonoid concentration varied from 15.71-29.20 mg mL–1 expressed as quercetin equivalent. The β-carotene bleaching inhibition assay varied from 21.20-89.60 μg mL–1, while anti-lipid peroxidation inhibition assay and metal-chelating assay results varied from 13.98-41.63 nmol mL–1 and 382.53-412.27 g mL–1, respectively. Linear correlation analysis between the parameters revealed a weak positive relationship. Conclusion: Based on the results, it is concluded that fractions of ethanolic extract of D. oliveri stem bark, particularly fractions 11 and 12, possess potent antioxidant activity irrespective of parameters used, suggesting that this extract contains substances that could act through synergistic action related to, but not limited to direct free radical scavenging, chelation of transition metals and direct inhibition of lipid peroxidation.
PDF Abstract XML References Citation
Copyright: © 2022. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

How to cite this article

Ojochenemi Ejeh Yakubu, Sunday Ene-Ojo Atawodi and Kayode Adebisi Arowora, 2022. Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract. Biotechnology, 21: 171-181.

DOI: 10.3923/biotech.2022.171.181

URL: https://scialert.net/abstract/?doi=biotech.2022.171.181

Search


INTRODUCTION


Oxygen is an element obligatory for life, living systems have evolved to survive in the presence of molecular oxygen and for most biological systems1. Oxidative properties of oxygen play a vital role in diverse biological phenomena. Oxygen has double-edged properties, being essential for life, it can also aggravate the damage within the cell by oxidative events2. Free radicals are well documented for playing a dual role in our body as both deleterious and beneficial species. In low/moderate concentrations free radicals are involved in normal physiological functions but excess production of free radicals or a decrease in antioxidant level leads to oxidative stress3,4.

Antioxidants are both natural and synthetic compounds that can scavenge free radicals and inhibit oxidation processes5. Many synthetic antioxidants such as butylated hydroxyanisole (BHA) and Butylated Hydroxytoluene (BHT) are very effective and used for industrial processes, but they possess some side effects and toxic properties in human health, thus warranting the increasing interest in natural antioxidants, e.g., polyphenols, present in medicinal and dietary plants6.

Medicinal plant parts are commonly rich in phenolic compounds, such as flavonoids, phenolic acids, stilbenes, tannins, coumarins, lignans and lignins. These compounds have multiple biological effects including antioxidant activity7. Antioxidants are widely used in dietary supplements and have been investigated for the prevention of diseases such as cancer, coronary heart disease and even altitude sickness8-11 since earlier studies suggested that antioxidant supplements have health-promoting potentials12,13.

Daniellia oliveri leaf and stem bark are used in Northern Nigeria for a variety of gastrointestinal complaints and diabetes mellitus. The resin of this plant is used to heal sores and against microbial infections. An earlier study evaluated the effectiveness of the use of Daniellia oliveri stem bark as a remedy for gastrointestinal parasites14,15. Also, the leaf of Daniellia oliveri has been found effective as an antispasmodic agent, in vitro on isolated guinea pig ileum16.

Therefore, the determination of the phytochemical properties and antioxidant potential of the plant stem bark was considered important as a means of providing more data on the pharmacological properties of the plant. This investigation was a comparative study of different methods of determining of antioxidant activities of fractions of ethanolic extract of Daniellia oliveri stem bark.

MATERIALS AND METHODS


Study area: This research project was conducted from November, 2016 to August, 2017 at the Federal University, Wukari, Nigeria.

Sample collection: The healthy stem bark of the plant, Daniellia oliveri was collected from Biological Garden within the Federal University, Wukari Campus, Wukari LGA, Taraba State, Nigeria. The plant was authenticated by Jemilat Ibrahim, a Taxonomist with the Ethnobotany and Herbarium Section, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria where a Voucher Number: NIPRD H5483 was assigned.

Sample preparation: The stem barks were examined to be free from diseases. The stem bark was cut into pieces using a kitchen knife and was dried under shade until it became brittle before being pulverized using laboratory mortar and pestle.

Ethanolic extraction: Pulverized sample of Daniellia oliveri stem bark (100 g) was soaked in 400 mL of ethanol (1:4 w/v) and was allowed to stand for 48 hrs at room temperature according to the method described by Iwueke and Nwodo17. The extracts were filtered out first, using a clean white sieving mesh and then using the Whatman No. 1 filter paper. The concentrated extracts were then transferred to air-tight containers, corked and preserved in the refrigerator at 4°C until required. Aliquots of the crude plant extract residue were weighed and used for phytochemical screening.

Fractionation of ethanolic extract: The ethanol extract was subjected to column chromatography to separate the extract into its component fractions using the method earlier described by Yakubu et al.18. Silica gel was used in packing the column while solvent combinations of varying polarities were used as the mobile phase.

Packing of the column: The lower part of the glass column was stocked with glass wool with the aid of a glass rod. Silica gel of G60-200 mesh size (75 g) was dissolved in 180 mL of absolute ethyl acetate to make the slurry. The chromatographic column (30 mm diameter by 40 cm height) was packed with silica gel and allowed the free flow of the solvent into a conical flask. At the end of the packing process, the tap was locked and the column was allowed 24 hrs to stabilize after which, the clear solvent at the top of the silica gel was allowed to drain down the silica gel meniscus.

Elution: The extract (2 g) was dissolved in 2 mL absolute methanol and the solution was applied to a chromatographic column. Elution of the extract was done with a solvent system of gradually increasing polarity, beginning from chloroform, ethyl acetate, methanol and finally water. The following ratio of solvent combinations was sequentially used in the elution process, ethyl acetate 100:00, ethyl acetate:ethanol 50:50, ethyl acetate:ethanol 50:50, ethanol:methanol 50:50, ethanol:methanol 0:100, methanol:water 50:50, methanol:water 0:100.

The column was eluted with various eluents (400 mL each time) and the fractions were collected in aliquots of 200 mL.

Determination of total antioxidant capacity (TAC): The 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was measured in triplicates based on the procedure of Augustine et al.19. This is based on the principle that, because of its odd electron, DPPH interact with the compounds (antioxidants in the sample) to reduce the radicals to corresponding hydrazines, changing the DPPH colour from violet to yellow with the intensity being proportional to the radical scavenging activity and is measured at 517 nm. Total antioxidant capacity (TAC) was calculated as mg mL–1 trolox equivalent (TE) using the regression equation from the calibration curve constructed from trolox standard concentration (25, 50, 100, 150 and 250 mg mL–1).

Determination of total flavonoids content: Total flavonoids were determined using the aluminium chloride colorimetric method20. Quercetin standard was used for derivation of the calibration curve (50, 100, 150, 250 and 500 mg mL–1). Total flavonoids were expressed as mg mL–1 quercetin equivalent (QE).

Determination of total phenolic compounds: Total phenolic content (TPC) of the extract was estimated following the phosphomolybdic/phosphotungstic acid complex procedure21 utilizing the Folin-Ciocalteu (FC) reagent. The method relies on the transfer of electrons in an alkaline medium from phenolic compounds to form a blue chromophore constituted by a phosphotungstic/phosphomolybdenum complex where the maximum absorption depends on the concentration of phenolic compounds. The reduced Folin-Ciocalteu reagent is detectable with a spectrophotometer in the range of 690-710 nm. The reaction temperature (35°C) was used to reduce the time necessary to attain the maximum colour. The measurements were compared to a standard curve of prepared gallic acid solutions (20, 40, 60, 80 and 100 mg mL–1) and expressed as milligrams of gallic acid equivalents.

β-carotene bleaching inhibition assay: The antioxidant activity was determined by measuring the inhibition of conjugated diene hydroperoxides arising from linoleic acid oxidation by reacting it with β-carotene22. The stock solution of the β-carotene-linoleic acid mixture was prepared thus, 0.5 mg β-carotene was dissolved in 1 mL of chloroform. Thereafter, 25 μL linoleic acid and 200 mg Tween 40 were added. Chloroform was then evaporated using a vacuum evaporator. Then 100 mL of oxygenated distilled water was added with vigorous shaking, 2.5 mL of this reaction mixture was transferred into test tubes and 0.35 mL of the extracts (2 mg mL–1) were added, the emulsion system was incubated for 2 hrs at 50°C and the absorbance of the mixtures was determined at 490 nm.

Measurement of absorbance was continued until the colour of β-carotene disappeared. The bleaching rate (R) of β-carotene was calculated according to the equation:

Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract

Where:

ln =
Natural log
a =
Absorbance at time 0
b =
Absorbance at time t (120 min)

Metal chelating activity: The metal chelating activity of the extract fractions with ferrous ions was measured in triplicates following the method of Johnson et al.23. The reaction mixture containing 0.5 mL of the fraction, 1.6 mL of water, 0.05 mL of FeCl2 (2 mM) and 0.1 mL of ferrozine (5 mM) was incubated at 40°C for 10 min and the absorbance was measured at 562 nm. Measurement was carried out in triplicate for all fractions. The chelating activity of the extract at different concentrations was calculated as:

Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract

Where:

A0 =
Absorbance of the control (without extract)
A1 =
Absorbance of the reaction mixture
A2 =
Absorbance without FeCl2

Lipid peroxidation inhibition assay: This assay was used to estimate the degree of lipid peroxidation of the plant extract by following the method of Yakubu et al.24. Homogenate (10% ) was prepared from the freshly excised liver of a healthy goat using cold phosphate buffer saline (pH 7.4). Fraction (0.1 mL) and 2.8 mL of the freshly prepared 10% liver homogenate were added to 0.1 mL of (50 mM) ferrous sulphate and incubated for 30 min following which 0.1 mL of the reaction mixture was mixed with 1.5 mL of 10% trichloroacetic (TCA) and further incubated for 10 min. It was then filtered and the supernatant was added to a tube containing 1.5 mL of 0.67% thiobarbituric acid (TBA) (in 50% acetic acid) and placed in a boiling water bath for 30 min. The colour developed by the different concentrations was measured at 535 nm. Measurement was carried out in triplicate for all fractions. Anti-lipid peroxidation was assessed by using the following formula:

Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract

Where:

Ai = Absorbance of Fe2+ induced peroxidation
As = Absorbance of test sample
Ac =
Absorbance of control

RESULTS


Figure 1 shows the total antioxidant capacity of different fractions of the extract. Fractions 11 and 12 possessed the highest antioxidant activity followed by fractions 13, 14, 6, 5 and 4. Fractions 7, 8 and 9 have the same TAC, while fractions 2, 1 and 3 have the least.

In Fig. 2, fractions 11 and 12 have the highest TFC concentrations followed by fraction 4 and continued in the following order of fractions, 1>9>5>6>8>3>13>14>7>10 and finally 2.

Total phenolic content (TPC) concentrations ranged from 1453.85-1460.77 mg mL–1 GAE with fractions 11 having the highest concentration and 1, 3 and 6 having the lowest concentration as depicted in Fig. 3.

The results for the β-carotene bleaching assay showed a different pattern from that of TAC, TFC and TPC. In the β-carotene bleaching assay, fraction 8 has the highest activity and then continues in the following order, 9>5>1>2>4, with fraction 10 having the least in Fig. 4.

Thiobarbituric Acid Reactive Substances (TBARS) results show that fractions, 11, 12, 6 and 5 distinctively showed the highest anti-lipid peroxidation level compared to other fractions. Hence, fractions 1, 2, 9, 13 and 14 have the least TBARS concentrations in Fig. 5.

The metal chelating assay revealed that almost all the fractions have the same activity with insignificant (p>0.05) changes in concentration between the fractions, except fraction 14 which showed the least level in Fig. 6.

Correlation analysis between the parameters revealed the following: TAC/TFC (R2 = 0.0147), TAC/TPC (R2 = 0.1314) and TAC/β-carotene (R2 = 0.0966) in Fig. 7-9 were all weak positive relationship. While that of TBARS/TFC (R2 = 0.0466) and metal chelating/TFC (R2 = 0.0007) in Fig. 10 and 11 showed extremely weak relationship.

DISCUSSION


The total antioxidant capacity of the fractions obtained from the ethanolic extract of Daniellia oliveri stem bark ranged from 0.03-0.13 mg mL–1 (Fig. 1), indicat ing that plant extract has an appreciable amount of bioactive compounds.

Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract
Fig. 1: Total antioxidant capacity (TAC) of different fractions of ethanolic extract of D. oliveri stem bark


Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract
Fig. 2: Total flavonoids content (TFC) of different fractions of ethanolic extract of D. oliveri stem bark


Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract
Fig. 3: Total phenolic content (TPC) of different fractions of ethanolic extract of D. oliveri stem bark


Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract
Fig. 4: β-carotene bleaching inhibition assay of different fractions of ethanolic extract of D. oliveri stem bark


Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract
Fig. 5: Anti-lipid peroxidation effects of different fractions of ethanolic extract of D. oliveri stem bark


Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract
Fig. 6: Metal-chelating inhibition activity of different fractions of ethanolic extract of D. oliveri stem bark


Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract
Fig. 7: Linear correlation between TAC/TFC of different fractions of ethanolic extract of D. oliveri stem bark


Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract
Fig. 8: Linear correlation between TAC/TPC of different fractions of ethanolic extract of D. oliveri stem bark


Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract
Fig. 9: Linear correlation between TAC/β-carotene bleaching inhibition of different fractions of ethanolic extract of D. oliveri stem bark


Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract
Fig. 10: Linear correlation between TFC/TBARS of different fractions of ethanolic extract of D. oliveri stem bark


Image for - Antioxidant Activity of Partially Purified Fractions of Daniellia oliveri (Rolfe) Hutch and Dalziellii Stem Bark Ethanolic Extract
Fig. 11: Linear correlation between TFC/Metal chelating activity of different fractions of ethanolic extract of D. oliveri stem bark

This study agreed with Shabir et al.25 that medicinal plants used in traditional healings have antioxidant properties. The results of antioxidant properties determined showed that the solvents used were all able to extract substances with antioxidants potentials. However, the ethyl acetate was less efficient in the extraction of these antioxidants substances compared to other employed solvents (Fig. 1). The reducing tendency of the extracts increased with ethanol:water fraction than other solvents and variations in reducing ability was observed among the different fractions considered (Fig. 1), suggesting that the solubility of the active principle relies greatly upon this particular solvent combination. This point to this fraction of the extract, among others for further scientific and industrial evaluation.

The total flavonoid content in the fractions ranged from 15.71-31.20 mg mL–1, while that of total phenolics was between 1453.85 and 14460.77 mg mL–1 GAE (Fig. 2 and 3). That the phenolic content was much higher than the total flavonoid content, indicates that the plant contains much more phenolic compounds other than flavonoids. Reports by different researchers have established that most flavonoids have stronger radical-scavenging capacity due to their electron (hydrogen) releasing tendency26 than other natural phenolic compounds27-29.

The differences in the magnitude of effects displayed by flavonoids and phenolics from natural products could be a result of the type of plant, the exact chemical nature of the compound, the solubility of the different compounds and the effectiveness of extraction solvents in solubilizing such compounds30,31. In general, it has been suggested that solvents with moderate polarities are often preferred for the extraction of phenolics and antioxidant compounds as opposed to those with higher polarities like water or non-polar counterparts like hexane32.

The β-carotene, a lipid-soluble compound of the terpenes subclass is a free radical scavenging antioxidant that is metabolized in the biological systems by some of the essential antioxidant enzymes that have antioxidant activity like superoxide dismutases33. In the absence of antioxidants, β-carotene forms hydroperoxides with resultant bleaching and change in colour as a result of linoleic acid oxidation. The fractions of ethanolic extract of Daniellia oliveri stem bark have been demonstrated in this study to show good antioxidant activity against the bleaching effect with increasing concentrations (Fig. 4), thus, suggesting the presence of antioxidant compounds that mitigates this bleaching effect in this assay34.

Lipid peroxidation appears to be important in many human diseases including atherosclerosis, primary tissue damage and traumatic brain damage35. In addition, oxidative stress has deleterious effects on proteins and DNA which are even more significant targets of injury than lipids, but lipid peroxidation often is the last stage in the injury process. Thus, the application of simple diene-conjugate and Thiobarbituric Acid Reactive Substances (TBARS) assay to human tissues and body fluids has demonstrated considerable results of lipid peroxidation36,37, suggesting lipid peroxidation as an important indicator of damaged tissues that are induced by reactive oxygen species38,39. Hence, the level of anti-lipid peroxidation effects shown by D. oliveri stems bark ethanolic extract and fractions (Fig. 5) indicates that these fractions possess anti-lipid peroxidation capacity in varying measures.

Iron, a metal, catalyzes important oxidation reactions and generates free hydroxyl radicals and peroxides, resulting in diseases. Thus, these oxidation reactions are delayed by iron chelators, which mobilize tissue iron by forming soluble and stable complexes. Ferrozine, an iron chelator quantitatively forms complexes with Fe2+, where the presence of other chelating agents in extracts disrupts complex formation resulting in the formation of red color40. Measurement of colour reduction allows the estimation of the chelating activity of the existing chelator. Fe2+ (transition metal ion) possesses the ability to move single electrons and thus allow the formation and propagation of radical reactions. They mainly avoid reactive oxygen species (ROS) generation that is associated with redox-active metal catalysis involving the metal ion chelation. Fractions of ethanolic Daniellia oliveri stem bark extract contained antioxidant constituents that interfered with the formation of ferrous and ferrozine complexes (Fig. 6).

Correlation analysis showed positive but weak relationships between the results of TAC and TFC, TAC and TPC, TAC and β-carotene (Fig. 7-9) and an even weaker relationship between TBARS and between metal chelating assay and TFC (Fig. 9 and 10). The weak relationship exhibited by the fractions could signify that the elicited effects to a very large extent, are not dependent on the phenolic and flavonoid contents, although their presence suggests their contributions. This corroborates the findings of earlier workers40.

These works are laboratory finding and have not been clinically proven. It is therefore, recommended for further scientific studies via structure elucidation of the active compounds and clinical validation of the claims.

CONCLUSION


Based on the data obtained in this study, it can be concluded that fractions of ethanolic extract of D. oliveri stem bark, particularly fractions 11 and 12, possess potent antioxidant activity by different methods, suggesting that this extract contains substances that could act through synergistic action related to, but not limited to direct free radical scavenging, chelation of transition metal and direct inhibition of lipid peroxidation.

SIGNIFICANCE STATEMENT


This study discovered the appropriate solvent for the extraction and purification of the active ingredient in this plant that can be beneficial for combating/management of oxidant-induced pathologies. This study will help the researchers to uncover the critical areas of this methodology that many researchers were not able to explore.

ACKNOWLEDGMENT

The author thanks Teza Zenas Simon for his kind support during the laboratory phase of this research work.

REFERENCES


  1. Farombi, E.O., S. Shrotriya and Y.J. Surh, 2009. Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-κB and AP-1. Life Sci., 84: 149-155.
    CrossRefDirect Link

  2. Yakubu, O.E., R.H.N. Boyi, C. Shaibu, M.A. Abah and J. Akighir, 2019. Antioxidant parameters and GC-MS phytochemical analysis of Hymenocardia acida stem bark ethanolic extract. Trends Appl. Sci. Res., 14: 263-270.
    CrossRefDirect Link

  3. Oluwole, O.O. and G.O. Omitogun, 2016. Haematological traits of nigerian indigenous pig and its hybrid (50% large white × 50 NIP) at post weaning ages. Am. J. Mol. Biol., 6: 45-52.
    CrossRefDirect Link

  4. Yakubu, O.E., C. Imo, C. Shaibu, J. Akighir and D.S. Ameh, 2020. Effects of ethanolic leaf and stem-bark extracts of Adansonia digitata in alloxan-induced diabetic wistar rats. J. Pharmacol. Toxicol., 15: 1-7.
    CrossRefDirect Link

  5. Hayat, Q., S. Hayat, M. Irfan and A. Ahmad, 2010. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot., 68: 14-25.
    CrossRefDirect Link

  6. Anagnostopoulou, M.A., P. Kefalas, V.P. Papageorgiou, A.N. Assimopoulou and D. Boskou, 2006. Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem., 94: 19-25.
    CrossRefDirect Link

  7. Sharma, S.K., L. Singh and S. Singh, 2013. A review on medicinal plants having antioxidant potential. Indian J. Res. Pharm. Biotechnol., 1: 404-409.
    Direct Link

  8. Rakhi, K., G. Choudhary and G.N. Darwhekar, 2019. Spectrometric determination of total phenolic content for standardization of various Phyllanthus species. Asian J. Pharm. Clin. Res., 12: 297-301.
    CrossRefDirect Link

  9. Ushie, O.A., P.A. Neji, E.E. Etim and G.E. Nsor, 2013. Phytochemical screening and antimicrobial activities of Phyllanthus amarus stem bark extracts. Int. J. Mod. Biol. Med., 3: 101-112.
    Direct Link

  10. Atawodi, S.E., O.D. Olowoniyi, G.O. Adejo and M.L. Liman, 2017. Phytochemical, Pharmacological and Therapeutical Potentials of Some Wild Nigerian Medicinal Trees. In: Medicinal and Aromatic Plants of the World-Africa Volume 3, Neffati, M., H. Najjaa and A. Mathe (Eds.), Springer, Dordrecht, Netherlands, ISBN: 978-94-024-1119-5, pp: 283-309.
    CrossRefDirect Link

  11. Kumar, R. and O.P. Chaurasia, 2019. A review on performance and emissions of compression ignition engine fueled with ethanol-diesel blend. J. Eur. Systèmes Automatisés, 52: 205-214.
    CrossRefDirect Link

  12. Atawodi, S.E., J.C. Atawodi, G.A. Idakwo, B. Pfundstein and R. Haubner et al., 2010. Evaluation of the polyphenol content and antioxidant properties of methanol extracts of the leaves, stem and root barks of Moringa oleifera Lam. J. Med. Food, 13: 710-716.
    CrossRefDirect Link

  13. Pharmawati, M. and L.P. Wrasiati, 2020. Phytochemical screening and FTIR spectroscopy on crude extract from Enhalus acoroides leaves. Malaysian J. Anal. Sci., 24: 70-77.
    Direct Link

  14. Adama, K., B.A.M. Gaston, H.T. Hamidou, T. Amadou and S. Laya, 2009. In vitro anthelmintic effect of two medicinal plants (Anogeissus leiocarpus and Daniellia oliveri) on Haemonchus contortus, an abomasal nematode of sheep in Burkina Faso. Afr. J. Biotechnol., 8: 4690-4695.
    CrossRefDirect Link

  15. Ahmadu, A., H.A. Kaita, M. Garba and A.H. Yaro, 2003. Antispasmodic actions of the leaves of Daniella oliveri. Niger. J. Nat. Prod. Med., 7: 13-15.
    CrossRefDirect Link

  16. Sajid, Z.I., F. Anwar, G. Shabir, G. Rasul, K.M. Alkharfy and A.H. Gilani, 2012. Antioxidant, antimicrobial properties and phenolics of different solvent extracts from bark, leaves and seeds of Pongamia pinnata (L.) pierre. Molecules, 17: 3917-3932.
    CrossRefPubMedDirect Link

  17. Iwueke, A.V. and O.F.C. Nwodo, 2008. Antihyperglycaemic effect of aqueous extract of Daniella oliveri and Sarcocephalus latifolius roots on key carbohydrate metabolic enzymes and glycogen in experimental diabetes. Biokemistri, 20: 63-70.
    Direct Link

  18. Yakubu, O.E., O.F.C. Nwodo, P.E. Joshua, M.N. Ugwu, A.D. Odu and F. Okwo, 2014. Fractionation and determination of total antioxidant capacity, total phenolic and total flavonoids contents of aqueous, ethanol and n-hexane extracts of Vitex doniana leaves. Afr. J. Biotechnol., 13: 693-698.
    CrossRefDirect Link

  19. Ahmadu, A.A., H. Baba and A. Agunu, 2014. Triterpenoids from Daniellia oliveri leaves, Hutch and Dalz (Fabaceae). Niger. J. Pharm. Appl. Sci. Res., 3: 10-14.
    Direct Link

  20. Tuah, B., M. Asante, G. Asare and D. Doku, 2017. In vitro antioxidant activity in seven selected local ghanaian spices and an artificial spice, shrimp cube. World J. Nutr. Health, 5: 46-52.
    CrossRefDirect Link

  21. Verma, S., H. Sharma and M. Garg, 2014. Phyllanthus amarus: A review. J. Pharmacogn. Phytochem., 3: 18-22.
    Direct Link

  22. Jayaprakasha, G.K., R.P. Singh and K.K. Sakariah, 2001. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem., 73: 285-290.
    CrossRefDirect Link

  23. Johnson, M., S.M. Akoro and K.G. Godonu, 2014. Hypoglycemic and hepatoprotective effects of Vernonia amygdalina (bitter leaf) and its effect on some biochemical parameters in alloxan-induced diabetic male albino rats. Sci. J. Biotechnol., Vol. 2014.
    CrossRefDirect Link

  24. Yakubu, O.E., E.P.K. Imarenezor and S.M.C. Udeh, 2016. Total antioxidant capacity, phenolic and flavonoids contents of partially purified aqueous extract of Vitex doniana leaves. FUW Trend Sci. Technol. J., 1: 221-224.
    Direct Link

  25. Shabir, G., F. Anwar, B. Sultana, Z.M. Khalid, M. Afzal, Q.M. Khan and M. Ashrafuzzaman, 2011. Antioxidant and antimicrobial attributes and phenolics of different solvent extracts from leaves, flowers and bark of gold mohar [Delonix regia (Bojer ex Hook.) Raf.]. Molecules, 16: 7302-7319.
    CrossRefDirect Link

  26. Ibrahim, M.A., N.A. Koorbanally and M.S. Islam, 2014. Antioxidative activity and inhibition of key enzymes linked to type-2 diabetes (α-glucosidase and α-amylase) by Khaya senegalensis. Acta Pharm., 64: 311-324.
    CrossRefDirect Link

  27. Evans, P. and B. Halliwell, 2001. Micronutrients: Oxidant/antioxidant status. Br. J. Nutr., 85: S67-S74.
    CrossRefDirect Link

  28. Salahudeen, M.S., S.B. Duffull and P.S. Nishtala, 2015. Anticholinergic burden quantified by anticholinergic risk scales and adverse outcomes in older people: A systematic review. BMC Geriatrics, Vol. 15.
    CrossRefDirect Link

  29. Buizza, L., G. Cenini, C. Lanni, G. Ferrari-Toninelli and C. Prandelli et al., 2012. Conformational altered p53 as an early marker of oxidative stress in Alzheimer's disease. PLoS ONE, Vol. 7.
    CrossRefDirect Link

  30. Joshi, H. and M. Parle, 2007. Pharmacological evidences for antiamnesic potentials of Phyllanthus amarus in mice. Afr. J. Biomed. Res., 10: 165-173.
    CrossRefDirect Link

  31. Huang, D., B. Ou and R.L. Prior, 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem., 53: 1841-1856.
    CrossRefPubMedDirect Link

  32. Negi, D. and A.S. Bisht, 2021. A review on brief study of Calotropis gigantea Linn. J. Drug Delivery Ther., 11: 224-228.
    CrossRefDirect Link

  33. Atawodi, S.E., J.C. Atawodi, Y. Pala and P. Idakwo, 2009. Assessment of the polyphenol profile and antioxidant properties of leaves, stem and root barks of Khaya senegalensis (Desv.) A.Juss. Electron. J. Biol., 5: 80-84.
    Direct Link

  34. Wang, L., C. Chen, A. Su, Y. Zhang, J. Yuan and X. Ju, 2016. Structural characterization of phenolic compounds and antioxidant activity of the phenolic-rich fraction from defatted adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed meal. Food Chem., 196: 509-517.
    CrossRefDirect Link

  35. Bouayed, J., L. Hoffmann and T. Bohn, 2011. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem., 128: 14-21.
    CrossRefDirect Link

  36. Chakraborty, R., D. Biplab, N. Devanna and S. Sen, 2012. Antiinflammatory, antinociceptive and antioxidant activities of Phyllanthus acidus L. extracts. Asian Pac. J. Trop. Biomed., 2: S953-S961.
    CrossRefDirect Link

  37. Oluboyo, B.O., A.O. Oluboyo and S.O. Kalu, 2016. Inhibitory effects of Phyllanthus amarus extracts on the growth of some pathogenic microorganisms. Afr. J. Clin. Exp. Microbiol., 17: 166-172.
    CrossRefDirect Link

  38. Muanda, F., D. Koné, A. Dicko, R. Soulimani and C. Younos, 2011. Phytochemical composition and antioxidant capacity of three Malian medicinal plant parts. Evidence-Based Complementary Altern. Med., Vol. 2011.
    CrossRefDirect Link

  39. Saeed, N., M.R. Khan and M. Shabbir, 2012. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary Altern. Med., Vol. 12.
    CrossRefDirect Link

  40. Sanda, M.A., G. Zengin, A. Aktumsek and Y. Cakmak, 2015. Evaluation of antioxidant potential of two Daphne species (D. gnidioides and D. pontica) from Turkey. Emir. J. Food Agric., 27: 488-494.
    CrossRefDirect Link

Search


Related Articles

Effects of Ethanolic Leaf and Stem-bark Extracts of Adansonia digitata in Alloxan-induced Diabetic Wistar Rats
Antioxidant Parameters and GC-MS Phytochemical Analysis of Hymenocardia acida Stem Bark Ethanolic Extract

Leave a Comment


Your email address will not be published. Required fields are marked *

Useful Links

  • Journals
  • For Authors
  • For Referees
  • For Librarian
  • For Socities

Contact Us

Office Number 1128,
Tamani Arts Building,
Business Bay,
Deira, Dubai, UAE

Phone: +971 507 888 742
Email: [email protected]

About Science Alert

Science Alert is a technology platform and service provider for scholarly publishers, helping them to publish and distribute their content online. We provide a range of services, including hosting, design, and digital marketing, as well as analytics and other tools to help publishers understand their audience and optimize their content. Science Alert works with a wide variety of publishers, including academic societies, universities, and commercial publishers.

Follow Us
© Copyright Science Alert. All Rights Reserved