Subscribe Now Subscribe Today
Research Article
 

Environmental Factors for Optimisation of Spirulina Biomass in Laboratory Culture



I.M. Rafiqul , K.C.A. Jalal and M.Z. Alam
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

The study attempts to investigate the contribution of selecting optimal environmental factors as optimal temperature, light and pH condition obtained from previous experiments for growth and biochemical changes in S. platensis and S. fusiformis. Zarouk medium was used for the experiment in distilled water. For S. platensis, temperature was adjusted to 32°C, light to 2500 lux and pH 9 while for S. fusiformis, temperature was adjusted to 37°C, light to 2500 lux and pH 10. The specific growth rate and biomass of both S. platensis and S. fusiformis achieved in the present study are significantly higher than those achieved in previous cultures (p<0.05). Protein content of S. platensis was 58.6%. This value is vaguely lower than that achieved in previous experiments and the difference is not statistically significant. Protein content of S. fusiformis was 61.8%. This value is significantly higher (p<0.05) than that attained in temperature effect culture but statistically same to pH and light effect culture (p>0.05). These results suggested that favorable environmental conditions during Spirulina culture could be instrumental for good biomass production and protein production as well.

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

I.M. Rafiqul , K.C.A. Jalal and M.Z. Alam , 2005. Environmental Factors for Optimisation of Spirulina Biomass in Laboratory Culture. Biotechnology, 4: 19-22.

DOI: 10.3923/biotech.2005.19.22

URL: https://scialert.net/abstract/?doi=biotech.2005.19.22

REFERENCES

1:  Borowitzka, M.A., 1999. Commercial production of microalgae: Ponds, tanks, tubes and fermenters. J. Biotechnol., 70: 313-321.
CrossRef  |  Direct Link  |  

2:  Belay, A.Y. Ota, K.M. Kawa and H. Shimamatsu, 1993. Current knowledge on the potential health benefit of Spirulina. J. Applied Phycol., 5: 235-241.

3:  Cogne, G., C. Lasseur, J.F. Cornet, C.G. Dussap and J.B. Gros, 2001. Growth physiology of a microorganism (Spirulina platensis) by pressure measurement. Biltechnol. Lett., 23: 1309-1314.

4:  Cost, J.A.V., K.L Cozz, L. Oliveria and G. Magagin, 2001. Different nitrogen source and growth response of Spirulina platensis micro environments. World J. Microbiol. Biotechnol., 17: 439-442.

5:  Knusten, G. and K. Skjanes, 1999. Simple growth chamber for culturing microorganism with precision at different temperature and irradiance. J. Applied Phycol., 11: 487-491.

6:  Vonshak, A. and A. Richmond, 1988. Mass production of the blue-green algae Spirulina: An overview. Biomass, 15: 233-247.

7:  Abeliovich, A. and M. Shilo, 1972. Photooxidative death in blue-green algae. J. Bacteriol., 111: 682-689.

8:  Grobbelaar, J.U. and C.J. Soeder, 1985. Respiration losses in green algae cultivated in raceways ponds. J. Plankton Res., 7: 497-497.

9:  Guterman, H., A. Vonshak and S. Ben-Yaakov, 1989. Automatic on-line growth estimation method for outdoor algal biomass production. Biotechnol. Bioeng., 132: 143-143.

10:  Rafiqul, I.M., A. Hassan, G. Sulebele, C.A. Orosco and P. Roustaian, 2003. Influence of temperature on growth and biochemical composition of Spirulina platensis and Spirulina fusiformis. Iran Int. J. Sci., 4: 97-106.

11:  Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254.
CrossRef  |  PubMed  |  Direct Link  |  

12:  Bligh, E.G. and W.J. Dyer, 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911-917.
CrossRef  |  PubMed  |  Direct Link  |  

13:  Kates, M. and B.E. Volcani, 1966. Lipid composition of diatoms. Biochem. Biophys. Acta, 116: 264-278.

14:  Ciferri, O., 1983. Spirulina, the edible microorganism. Microbial. Rev., 47: 551-578.
PubMed  |  

15:  Belay, A., Y. Ota, K. Miyakawa and H. Shimamatsu, 1993. Current knowledge on potential health benefits of Spirulina. J. Applied Phycol., 5: 235-241.
CrossRef  |  Direct Link  |  

16:  Tanticharoen, M., M. Reungitchawali, B. Bunnag, P. Vonktaveesuk, A. Vonshak and Z. Cohen, 1994. Optimization of gamma linolenic acid (GLA) production in Spirulina platensis. J. Applied Phycol., 6: 295-300.

17:  Tedesco, M.A. and E.O Duerr, 1989. Light, temperature and nitrogen starvation effect on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. J. Applied Phycol., 1: 201-209.

18:  Rafiqul, I.M., A. Hassan, G. Sulebele, C.A. Orosco and P. Roustaian, 2003. Effect of pH on Spirulina production Proceeding of The International Conference on Advancement in Science and Technology, Aug. 5-7: Kuala Lumpur, Malaysia, pp: 176-178

19:  Kochart, A.G., 1978. Charbohydrate Determination by the Phenol-Sulphuric Acid Method. In: Handbook Of Phycological And Biochemical Methods, Hellebust, J.A. and J.S. Craigie (Eds.). Cambridge Univ. Press Publ, Cambridge, pp: 95
CrossRef  |  

20:  Paoletti, C., M. Vincenzini, F. Bocci and R. Materassi, 1980. Composizione Biochemia Generale Delic Biomass di Spirulina platensis e S. Maxima. In: Prospective della coltura di Spirulina in Italia, Materassi, R. (Eds.). Accademia dei Georg, Italia, pp: 111-125

21:  Henrickson, R., 1998. Earthrise Spirulina. Ronore Entrprise Inc., USA

22:  Richmond, A., 1992. Spirulina. In: Microalgal Biotechnology, Borowitzka, A. and L. Borowitzka (Eds.). Cambridge University Press., Cambridge, pp: 83-121

©  2021 Science Alert. All Rights Reserved