Subscribe Now Subscribe Today
Research Article

Kinetic and Stoichiometric Relationships of the Energy and Carbon Metabolism in the Culture of Microalgae

Katarzyna Chojnacka and Facundo-Joaquin Marquez-Rocha
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

Some microalgae can grow metabolizing inorganic and organic carbon sources, which might occur simultaneously and independently, while energy is supplied by light and/or an organic carbon source. In this context, the contribution of each metabolism to total growth can be determined by quantitative analysis. The illumination of microalgal cells growing in the presence of organic substances, might cause an effect which can drive the carbon metabolism in different ways. When analyzing the growth of different strains of microalgae, some differences could be distinguished, between additive or inhibitory effect of light on heterotrophic metabolism in mixotrophic or photoheterotrophic growth. This manuscript proposes, the integration of a kinetic and stoichiometric metabolic model which explains the differences of carbon and energy utilization modes between mixotrophic and photoheterotrophic growth in microalgae. This model presumably discloses relevant independent facts between the mechanisms of photosynthesis and the oxidative metabolism of organic compounds, such as glucose and the importance of these differences on the production of biomass and secondary metabolites.

Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

Katarzyna Chojnacka and Facundo-Joaquin Marquez-Rocha , 2004. Kinetic and Stoichiometric Relationships of the Energy and Carbon Metabolism in the Culture of Microalgae. Biotechnology, 3: 21-34.

DOI: 10.3923/biotech.2004.21.34


Austin, P.A., I.S. Ross and J.D. Mills, 1996. Regulation of pigment content and enzyme activity in the cyanobacterium Nostoc sp. Mac grown in continuous light a light-dark photoperiod or darkness. Biochim. Biphys. Acta, 1277: 141-149.

Becker, E.W., 1994. Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge, UK., ISBN-13: 9780521350204, Pages: 293.

Blanch, H.W. and D.S. Clark, 1996. Biochemical Engineering. Marcel Dekker, New York, pp: 195-197.

Camacho-Rubio, F., M.E. Martinez-Sancho, S. Sαnchez-Villasclaras and A. Delgado-Perez, 1989. Influence of pH on the kinetic and yield parameters of Scenedesmus obliquus heterotrophic growth. Process Biochem., 8: 133-136.
Direct Link  |  

Canizares-Villaneuva, R.O., A.R. Dominguez, M.S. Cruz and E. Rios-Leal, 1995. Chemical composition of cyanobacteria grown in diluted aerated swine wastewater. Bioresour. Technol., 51: 111-116.

Chauhan, V.S., S. Gurbaksh and V. Ramamurthy, 1995. Eucalyptus kraft black liquor enhances growth and productivity of Spirulina in outdoor cultures. Biotechnol. Prog., 11: 457-460.

Chen, F. and M.R. Johns, 1996. Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem., 31: 601-604.

Chen, F. and Y. Zhang, 1997. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microbial. Technol., 20: 221-224.

Chen, F., 1996. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol., 14: 421-426.

Chen, F., Y. Zhang and S. Guo, 1996. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol. Lett., 18: 603-608.

Chojnacka, K., 2003. Heavy metal ions removal by microalgae Spirulina sp. in the processes of biosorption and bioaccumulation. Ph.D. Thesis, Wroclaw University of Technology, Poland.

Endo, H., H. Hosoya and T. Koibuchi, 1977. Growth yields of Chorella regularis in dark-heterotrophic continuous culture using acetate. J. Ferment. Technol., 55: 369-379.

Fargašovα, A., 1997. The effects of organotin compounds on growth respiration rate and chlorophyll a content of Scenedesmus quadricauda. Ecotoxicol. Environ. Safe, 37: 193-198.

Goldman, J.C., W.J. Oswald and D. Jenkins, 1974. The kinetics of inorganic carbon limited algal growth. J. Water Pollut. Control Federat., 46: 554-574.

Hata, J., Q. Hua, C. Yang, K.M. Shimizu and M. Taya, 2000. Characterization of energy conversion based on metabolic flux analysis in mixotrophic liverwort cells Marchantia polymorpha. Biochem. Eng. J., 6: 65-74.

Kaplan, D., A.E. Richmond, Z. Dubinsky and S. Aaronson, 1986.. Algal Nutrition. In: CRC Handbook of Microalgal Mass Culture, Richmond, A. (Ed.). CRC Press, Boca Raton, FL.

Kobayashi, M., T. Kakizono, K. Yamaguchi, N. Nishio and S. Nagai, 1992. Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J. Fermint. Bioeng., 74: 17-20.

Kong, R., X. Xu and Z.A. Hu, 2003. TPR-family membrane protein gene is required for light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol. Rev., 216: 75-79.

Lee, H.Y., L.E. Erickson and S.S. Yang, 1984. The estimation of growth yield and maintenance parameters for photoautotrophic growth. Biotechnol. Bioeng., 26: 926-935.

Lin, L.P. and T. Chen, 1994. Factors affecting the mixotrophic growth of Chlorella pyrenoidosa. J. Chinses Agric. Chem. Soc., 32: 91-102.
Direct Link  |  

Marquez, F.J., 1999. Reassessment of the bioenergetic yield of Arthrospira platensis using continuous cullture. World J. Microbiol. Biotechnol., 15: 209-211.

Marquez, F.J., K. Sasaki, N. Nishio and S. Nagai, 1995. Inhibitory effect of oxygen accumulation on the growth of Spirulina platensis. Biotechnol. Lett., 17: 225-228.

Marquez, F.J., K. Sasaki, T. Kakizono, N. Nishio and S. Nagai, 1993. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J. Ferment. Bioeng., 76: 408-410.
CrossRef  |  Direct Link  |  

Marquez, F.J., N. Nishio, S. Nagai and K. Sasaki, 1995. Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J. Chem. Technol. Biotechnol., 62: 159-164.

Martinez, F. and M.I. Orus, 1990. Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM 1011. Plant Physiol., 95: 1150-1155.

Martinez, M.A., F. Camacho, J.M. Jimenez and J.B. Espinola, 1997. Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth. Process Biochem., 32: 93-98.

Neilson, A.H., W.F. Blankley and R.A Lewin, 1973. Growth with Organic Carbon and Energy Sources. In: Handbook of Phycological Methods, Stein, J.R.D. (Ed.). Cambridge University Press, Cambridge, pp: 275-285.

Ogawa, T. and G. Terui, 1970. Studies on the growth of Spirulina platensis (I) on the pure culture of Spirulina platensis. J. Ferment. Technol., 48: 361-367.

Ogawa, T. and S. Aiba, 1981. Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol. Bioeng., 23: 1121-1131.
CrossRef  |  

Ogawa, T., H. Kozasa and G. Terui, 1970. Studies on the growth of Spirulina platensis (II) growth kinetics of the autotrophic culture. J. Ferment. Technol., 50: 143-149.

Ogawa, T., T. Fujii and S. Aiba, 1978. Growth yield of microalgae: Reassessment of Ykcal. Biotechnol. Bioeng., 20: 1490-1500.

Ogbonna, J.C. and H. Tanaka, 2000. Light requirement and photosynthetic cell cultivation-development of processes for efficient light utilization in photobioreactors. J. Applied Phycol., 12: 207-218.
Direct Link  |  

Ogbonna, J.C., E. Ichige and H. Tanaka, 2002. Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Applied Microbiol. Biotechnol., 58: 532-538.

Olguin, E.J., S. Galicia, O. Angulo-Guerrero and E. Fernandez, 2001. The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresour. Technol., 77: 19-24.

Olguin, E.J., S. Galicia, R. Camacho, G. Mercado and T.J. Perez, 1997. Production of Spirulina sp. in sea water supplemented with anaerobic effluents in outdoor raceways under temperature climatic conditions. Applied Microbiol. Biotechnol., 48: 242-247.

Orus, M.I., E. Marco and F. Martinez, 1991. Suitability of Chlorella vulgaris UAM 101 for heterotrophic biomass production. Bioresour. Technol., 38: 179-184.
CrossRef  |  Direct Link  |  

Radmer, R.J., 1996. Algal diversity and commercial algal products. Bioscience, 46: 263-270.
Direct Link  |  

Richmond, A., 2000. Microalgal biotechnology at the turn of the millennium: A personal view. J. Applied Phycol., 12: 441-451.
Direct Link  |  

Singh, R.J., R.M. Kothari, R.K. Sharma and V. Ramamurthy, 1995. Enhancement of Spirulina biomass productivity by a protein hydrolysate. Applied Biochem. Biotechnol., 50: 285-290.

Smart, L.B., S.L. Anderson and L. McIntosh, 1991. Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803. EMBO J., 10: 3289-3296.

Takeyama, H., A. Kanamaru, Y. Yoshino, H. Kakuta, Y. Kawamura and T. Matsunaga, 1997. Production of antioxidant vitamins β-carotene vitamin C and vitamin E by two-step culture of Euglena gracilis. Biotechnol. Bioeng., 53: 185-190.

Torzillo, G., P. Carlozzi and B.A. Pushparaj, 1993. Two-plane tubular photobioreactor for outdoor culture of Spirulina. Biotechnol. Bioeng., 42: 891-898.

Vonshak, A., 2000. Mixotrophic growth modifies response of Spirulina (Arthrospira) platensis (cyanobacteria) cells to light. J. Phycol., 36: 675-679.

Wang, Y., Y. Li, D. Shi, G. Shen, B. Ru and S. Zhang, 2002. Characteristics of mixotrophic growth of Synechocystis sp. in an enclosed photobioreactor. Biotechnol. Lett., 24: 1593-1597.

Wen, Z.Y. and F. Chen, 2001. Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzyme Microbiol. Technol., 29: 341-347.

Wood, B.J.B., P.H.K. Grimson, J.B. German and M. Turner, 1999. Photoheterotrophy in the production of phytoplankton organisms. J. Biotechnol., 70: 175-183.
CrossRef  |  Direct Link  |  

Zhang, C.C., R. Jeanjean and F. Joset, 1998. Obligate phototrophy in cyanobacteria: More than a lack of sugar transport. FEMS Microbiol. Rev., 161: 285-292.

Zhang, X.W., F. Chen and M.R. Johns, 1999. Kinetic models for heterotrophic growth of Chlamydomonas reinhardtii in batch and fed-batch cultures. Process Biochem., 35: 385-389.

Zhang, X.W., Y.M. Zhang and F. Chen, 1998. Kinetic models for phycocyanin production by high cell density mixotrophic culture of the microalga Spirulina platensis. J. Ind. Microbiol., 21: 283-288.
CrossRef  |  Direct Link  |  

Zhang, X.W., Y.M. Zhang and F. Chen, 1999. Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochem., 34: 477-481.
CrossRef  |  Direct Link  |  

©  2020 Science Alert. All Rights Reserved