Subscribe Now Subscribe Today
Research Article
 

Production of Lipids Rich in Omega 3 Fatty Acids from the Halotolerant Alga Dunaliella salina



Hanaa H. Abd El-Baky , Farouk K. El Baz and Gamal S. El-Baroty
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

The effect of nitrogen limitation and salt stress on total lipid and unsaponifiable contents as well as fatty acid composition of Dunaliella salina were studied. The contents of total lipids, unsaponifiables and fatty acid composition were basically depend on NaCl and nitrogen concentration in the culture. The highest yield of total lipids (37.69%) and unsaponifiables (29.02%) was obtained in cells grown at 16% NaCl combined with 2.5 mM nitrogen. While, minimum yield occurred in cells grown in a culture containing 8% NaCl and 5 mM N. Cells grown at 16% NaCl combined with 2.5 mM N produced relatively higher proportion of polyunsaturated fatty acids (PUFAs), in particular C18:3w3 and C16:4w3. Increasing NaCl combined with decreasing N levels in the growth medium increased the total unsaturated fatty acids (TU) at the expense of total saturated fatty acids. At higher salinity, the total amounts of carotenoids and α-tocopherol in unsaponifiable fraction were significantly increased to reaching up to 12.03 and 4.10%. The results obtained suggest that D. salina cells containing high amount of total lipid, rich in w3 polyunsaturated fatty acids and antioxidant compounds in unsaponifiable lipid fraction may used as a supplemental ingredient or as a complete food to enhance the performance and state of the human body or improve a specific bodily function.

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Hanaa H. Abd El-Baky , Farouk K. El Baz and Gamal S. El-Baroty , 2004. Production of Lipids Rich in Omega 3 Fatty Acids from the Halotolerant Alga Dunaliella salina . Biotechnology, 3: 102-108.

DOI: 10.3923/biotech.2004.102.108

URL: https://scialert.net/abstract/?doi=biotech.2004.102.108

REFERENCES

1:  Borowitzka, M.A., 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. J. Applied Phycol., 7: 3-15.
CrossRef  |  Direct Link  |  

2:  Xu, X. and J. Beardall, 1997. Effect of salinity on fatty acid composition of a green microalgae from an antarctic hypersaline lake. Phytochemistry, 45: 655-658.

3:  Xu, X., J. Beardall and N.D. Hallam, 1998. Modification of fatty acid composition in halophlic antarctic microalgae. Phytochemistry, 49: 1249-1252.

4:  Innis, S.M., 1991. Essential fatty acids in growth and devlopment. Prog. Lipid Res., 30: 39-103.

5:  Ogata, J., Y. Hagiwara, H. Hagiwara and T. Shibamoto, 1996. Inhibition of malonaldehyde formation by antioxidants from ω3 polyunsaturated fatty acids. JAOCS, 73: 654-656.

6:  Otles, S. and R. Pire, 2001. Fatty acid composition of Chlorella and Spirulina microalgae species. JAOAC. Int., 84: 1708-1714.

7:  Roughan, G.P., 1989. Spirulina: A source of dietary gamma-linolenic acid. J. Sci. Food Agric., 47: 85-93.

8:  Pascaud, M. and K.P. Quoc, 1996. Effect of dietary γ-linolenic acid on the tissue phospholipid fatty acid composition and the synthesis of eicosanoids in rats. Ann. Nutr. Metab., 40: 99-108.

9:  Croft, K.D., L.J. Beilin, F.M. Legge and R. Vandongen, 1987. Effects of diets enriched in eicospentaenoic or docosahexaenoic acid on prostaglandin metabolism in rats. Lipids, 22: 647-650.

10:  Veloso, V., L. Reis, L. Gouveia, H.L. Fernandes and J.M. Novias, 1991. Lipid production by Phaeodactylum tricornum. Bioresour. Technol., 38: 115-119.

11:  Hoffman, D.R., E.E. Birch, D.G. Birch and R.D. Uany, 1993. Effect of supplementation with ω3long-chain polyunsaturated fatty acids on retinal and cortical development in premature infants. Am. J. Clin. Nutr., 57: 807-812.

12:  Mokady, S. and A.S. Sukenik, 1995. A marine unicellular algae in diets of pregnant and lactating as a source of ω3 fatty acids for the developing brain of their progeny. J. Sci. Food Agric., 68: 133-139.

13:  Sukenik, A., H. Takahahi and S. Mokady, 1994. Dietary lipids from marine uncellular algae enhance the amount of liver and blood ω3 fatty acids in rats. Ann. Nutr. Metab., 38: 85-96.

14:  Abd El-Baky, H.H., K.F. El-Baz and S.G. El-Baroty, 2004. Production of antioxidant by the green alga Dunaliella salina. Int. J. Agric. Biol., 6: 49-57.

15:  El-Baz, F.K., A.M. Aboul-Enein, G.S. El-Baroty, A.M. Youssef and H.H. Abdel-Baky, 2002. Accumulation of antioxidant vitamins in Dunaliella salina. J. Biol. Sci., 2: 220-223.
CrossRef  |  Direct Link  |  

16:  Farag, R.S., S.A.S. Hallabo, F.M. Hewedi and A.E. Basyony, 1986. Chemical evaluation of rapeseed oil. Fette Seifen. Anstrichmittel, 88: 391-397.

17:  Semenenko, E.V. and A.A. Abdullaev, 1980. Parametric control of -carotene biosynthesis in Dunaliella salina cells under conditions of intensive cultivation. Fizioloiya, Rastenii, 27: 31-41.

18:  Abd El-Baky, H.H., K.F. El Baz and S.G. El-Baroty, 2003. Spirulina species as a source of carotenoids and α-tocopherol and its anticarcinoma factors. Biotechology, 2: 222-240.

19:  Piorreck, M., K.H. Baasch and P. Pohl, 1984. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry, 23: 207-216.
Direct Link  |  

20:  Aboul-Enein, A.M., F.K. El-Baz, G.S. El-Baroty, A.M. Youssef and H.H. Abd El-Baky, 2003. Antioxidant activity of algal extracts on lipid peroxidation. J. Med. Sci., 3: 87-98.
CrossRef  |  Direct Link  |  

21:  El-Wakeil, F., M.S.M. Khairy, R.S. Farag and S.A.S. Hallabo, 1978. The antioxidant effect of naturally occurring unsaponifiable matter in linoleic acid and some vegetable oils. Grasas Y Aceites, 29: 9-15.

22:  Mendoza, H., A. Martel, M.J. del Rio and G. Reina, 1999. Oleic acid is the main fatty acid related with carotenogenesis in Dunaliella salina. J. Applied Phycol., 11: 15-19.
CrossRef  |  Direct Link  |  

23:  Romano, I. , M. Bellitti, B. Nicolaus, L. Lama, M.C. Manca, E. Pagnotta and A. Gambacorta, 2000. Lipid profile a useful chemotaxonomic marker for classification of a new cyanobacterium in Spirulina genus. Phytochemistry, 54: 289-294.

24:  Seto, A., H.C. Wang and C.W. Hesseltine, 1984. Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. JAOCS, 61: 892-894.

25:  Al-Hasan, R., M.A. Ghannoum, A.K. Salla, K.H. Abu-Elteen and K.S. Radwan, 1987. Correlative changes of growth, pigmentation and lipid composition of Dunaliella salina in response to halostress. Gen. Microbiol., 133: 2607-2616.

26:  Peeler, C.T., B. Marlh, K.J. Einspahr and G.A. Thompson, 1989. Lipid characterization of Dunaliella salina grown in media of varying salinity. Plant Physiol., 89: 970-976.

27:  Azachi, M., A. Sadka, M. Fisher, P. Goldshlag, I. Gokhman and A. Zamir, 2002. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol., 129: 1320-1329.

28:  Connor, W.E., 1994. n-3 Fatty Acids and Heart Disease. In: Nutrition and Disease Update: Heart Disease, Kritchevsky, D. and K.K. Caroll (Eds.). AOCS Press, Champaign, Ohio, pp: 1-34

29:  Kay, A.R., 1991. Microaglae as food and supplement. Crit. Rev. Food Sci. Nut., 30: 555-573.

30:  Saito, T., T. Saito and N. Oka, 1992. Scientific Reports on Chlorella in Japan. Silpaque Publishing, Kyoto, Japan

31:  Cohen, Z., A. Vonshak, S. Boussiba and A. Richmond, 1988. The Effect of Temperature and Cell Concentration on the Fatty Acid Composition of Outdoor Cultures of Porphyridium Cruentum. In: Algal Biotechnology, Stadler, T., J. Mollion, M.C. Verdus, Y. Karamanos and D. Christiaen (Eds.). Elsevier, London, pp: 412-419

32:  Kyle, D.J., K.D. Boswell, R.M. Gladue and S.E. Reab, 1992. Designer Oils from Microalgae as Nutritional Supplements. In: Biotechnology and Nutrition, Bills D.B. and S. Kung (Eds.). Butterworth-Heinemann, Boston, pp: 468

33:  Payer, H.D., 1971. First report upon the organization and experimental work of the Thailand German project on the production and utilization of single cell green algae as a protein source for human nutrition. Institute of Food Research and Product Development, Kasetsar University, Bangkok, Thailand.

34:  Carlson, S.E. and N. Salem, 1991. Essential of ω3 Fatty Acids in Growth and Development of Infants. In: Health Effects of ω3 Polyunsaturated Fatty Acids in Seafood, Simopoulus, A.P., R.R. Kifer and S.M. Barlow (Eds.). Karger, Basel, Switzerland, pp: 74-86

©  2021 Science Alert. All Rights Reserved