Subscribe Now Subscribe Today
Science Alert
 
    Publisher: Asian Network for Scientific Information
   
  Journal of Applied Sciences seeks to promote and disseminate the knowledge by publishing original research findings, review articles and short communications in the broad field of applied sciences. Scope of the journal includes: Biology, chemistry, physics, environmental, business and economics, finance, mathematics and statistics, geology, engineering, computer science, social sciences, natural and technological sciences, linguistics, medicine and architecture, food science, environmental science, agricultural engineering. Journal of Applied Sciences now accepting new submissions. Submit your best paper via online submission system.
  Editor-in-Chief:  Gazi Mahabubul Alam
 
 
Ahmad, Z. and H.M. Azamathulla, 2012. Direct solution for discharge in circular free overfall. J. Hydrol., 446-447: 116-120.
CrossRef  |  Direct Link  |  
Ahmad, Z. and H.M. Azamathulla, 2012. Quasi-theoretical end-depth-discharge relationship for trapezoidal channels. J. Hydrol., 456: 151-155.
CrossRef  |  Direct Link  |  
Ahmad, Z. and H.M. Azamathulla, 2012. Reply to the comments on: Direct solution for discharge in circular free overfall. J. Hydrol., 466-467: 446-447.
Ahmad, Z. and H.M. Azamathulla, 2012. Response to comment on Quasi-theoretical end-depth-discharge relationship for trapezoidal channels. J. Hydrol., 477: 265-266.
CrossRef  |  Direct Link  |  
Ahmad, Z., H.M. Azamathulla and N.A. Zakaria, 2011. ANFIS-based approach for the estimation of transverse mixing coefficient. Water Sci. Technol., 63: 1005-1010.
CrossRef  |  Direct Link  |  
Ayoubloo, M.K., H.M. Azamathulla, E. Jabbari and J. Mahjoobi, 2011. Model tree approach for estimation of critical submergence for horizontal intakes in open channel flows. Expert Syst. Applic., 38: 10114-10123.
Ayoubloo, M.K., H.M. Azamathulla, Z. Ahmad, A.A. Ghani, J. Mahjoobi and A. Rasekh, 2011. Prediction of the scour depth below spillways applying different soft computing techniques. Comput. Applic., 33: 92-97.
Direct Link  |  
Azamathulla, H.M. and A. Zahiri, 2012. Flow discharge prediction in compound channels using linear genetic programming. J. Hydrol., 454-455: 203-207.
CrossRef  |  Direct Link  |  
Azamathulla, H.M. and A.A. Ghani, 2010. ANFIS-based approach for predicting the scour depth at culvert outlet. J. Pipeline Syst. Eng. Pract., 2: 35-40.
CrossRef  |  Direct Link  |  
Azamathulla, H.M. and A.A. Ghani, 2010. Genetic programming to predict river pipeline J. Pipeline Syst. Eng. Pract., 1: 127-132.
CrossRef  |  Direct Link  |  
Azamathulla, H.M. and A.A. Ghani, 2011. Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Resour. Manage., 25: 1537-1544.
CrossRef  |  Direct Link  |  
Azamathulla, H.M. and A.A.M. Haque, 2013. Knowledge extraction from trained neural network scour model at culvert outlets. Neural Comput. Applic., 23: 2137-2141.
CrossRef  |  Direct Link  |  
Azamathulla, H.M. and F.C. Wu, 2011. Support vector machine approach for longitudinal dispersion coefficients in natural streams. Applied Soft Comput., 11: 2902-2905.
CrossRef  |  Direct Link  |  
Azamathulla, H.M. and M.A. Haque, 2012. Prediction of scour depth at culvert outlets using gene-expression programming. Int. J. Innov. Comput. Inform. Control, 8: 5045-5054.
Azamathulla, H.M. and M.A.M. Yusoff, 2013. Soft computing for prediction of river pipeline scour depth. Neural Comput. Applic., 23: 2465-2469.
CrossRef  |  Direct Link  |  
Azamathulla, H.M. and N.A. Zakaria, 2010. Appraisals of soft computing techniques in prediction of spillway scour depth. Dam Eng., 21: 189-202.
Azamathulla, H.M. and N.A. Zakaria, 2011. Prediction of scour below submerged pipeline crossing a river using ANN. Water Sci. Technol., 63: 2225-2230.
CrossRef  |  Direct Link  |  
Azamathulla, H.M. and R.D. Jarrett, 2013. Use of gene-expression programming to estimate manning's roughness coefficient for high gradient streams. Water Resour. Manage., 27: 715-729.
CrossRef  |  Direct Link  |  
Azamathulla, H.M. and S.N. Londhe, 2004. Discussion on Behaviour of non-linear flow and application of neural network in converging boundaries by P.R.M. Rao and N.B.P. Reddy. J. Hydraulic Eng., 10: 77-77.
Azamathulla, H.M. and Z. Ahmad, 2012. GP approach for critical submergence of intakes in open channel flows. J. Hydroinformatics, 14: 937-943.
CrossRef  |  Direct Link  |  
Azamathulla, H.M. and Z. Ahmad, 2012. Gene-expression programming for transverse mixing coefficient. J. Hydrol., 434-435: 142-148.
CrossRef  |  Direct Link  |  
Azamathulla, H.M. and Z. Ahmad, 2013. Estimation of critical velocity for slurry transport through pipeline using adaptive neuro-fuzzy interference system and gene-expression programming. J. Pipeline Syst. Eng. Pract., 4: 131-137.
CrossRef  |  Direct Link  |  
Azamathulla, H.M. and Z. Ahmad, 2014. Closure to estimation of critical velocity for slurry transport through pipeline using adaptive Neuro-fuzzy interference system and Gene-expression programming by H. Md. Azamathulla and Z. Ahmad. J. Pipeline Syst. Eng. Practice, Vol. 6. .
Direct Link  |  
Azamathulla, H.M., 2012. Comment on Reverse level pool routing: Comparison between a deterministic and a stochastic Approach by Marco D'Oria, Paolo Mignosa, Maria Giovanna Tanda. Journal of Hydrology, accepted for publication (27 July 2012); doi: http://dx. doi. org/10.1016/j. jhydrol. 2012.07. 045. J. Hydrol., 470-471: 328-328.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., 2012. Gene expression programming for prediction of scour depth downstream of sills. J. Hydrol., 460-461: 169-172.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., 2012. Gene-expression programming to predict scour at a bridge abutment. J. Hydroinformatics, 14: 324-331.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., 2013. Comment on Evaluation of selected equations for predicting scour at downstream of ski-jump spillway using laboratory and field data by C. Kumar and P. Sreeja. Eng. Geol., 152: 210-211.
Azamathulla, H.M., 2013. Gene-expression programming to predict friction factor for Southern Italian rivers. Neural Comput. Applic., 23: 1421-1426.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., 2015. Discussion of Orifice spillway aerator: Hydraulic design by V.V. Bhosekar, V. Jothiprakash and P.B. Deolalikar. J. Hydraul. Eng., Vol. 141. 10.1061/(ASCE)HY.1943-7900.0000932.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., A. Guven and Y.K. Demir, 2011. Linear genetic programming to scour below submerged pipeline. Ocean Eng., 38: 995-1000.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., A.A. Ghan, N.A. Zakaria, C.K. Chang and Z.A. Hassan, 2010. Genetic programming approach to predict sediment concentration for Malaysian rivers. Int. J. Ecol. Econ. Stat., 16: 53-64.
Direct Link  |  
Azamathulla, H.M., A.A. Ghani and N.A. Zakaria, 2009. ANFIS-based approach to predicting scour location of spillway. Water Manage., 162: 399-407.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., A.A. Ghani and N.A. Zakaria, 2010. Prediction of scour around hydraulic structure using soft computing technique. Malaysian J. Civil Eng., 22: 53-65.
Direct Link  |  
Azamathulla, H.M., A.A. Ghani and S.Y. Fei, 2012. ANFIS-based approach for predicting sediment transport in clean sewer. Applied Soft Comput., 12: 1227-1230.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., A.A. Ghani, C.K. Chang, Z.A. Hasan and N.A. Zakaria, 2010. Machine learning approach to predict sediment load-a case study. Clean-Soil Air Water, 38: 969-976.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., A.A. Ghani, C.S. Leow, C.K. Chang and N.A. Zakaria, 2011. Gene-expression programming for the development of a stage-discharge curve of the Pahang river. Water Resour. Manage., 25: 2901-2916.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., A.A. Ghani, N.A. Zakaria and A. Guven, 2009. Genetic programming to predict river pipeline scour. J. Hydr. Eng., 165: 1-5.
Azamathulla, H.M., A.A. Ghani, N.A. Zakaria and A. Guven, 2010. Genetic programming to predict bridge pier scour. J. Hydr. Eng., 136: 165-169.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., A.A. Ghani, N.A. Zakaria, C.C. Kiat and L.C. Siang, 2008. Knowledge extraction from trained neural network scour models. Modern Applied Sci., 2: 52-62.
Direct Link  |  
Azamathulla, H.M., A.A. Ghani, N.A. Zakaria, S.H. Lai, C.K. Chang, C.S. Leow and Z. Abuhasan, 2008. Genetic programming to predict ski-jump bucket spill-way scour. J. Hydrodynamics Ser. B, 20: 477-484.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., C.C. Yong, A.A. Ghani and C.K. Chang, 2013. Suspended sediment load prediction of river systems: GEP approach. Arabian J. Geosci., 6: 3469-3480.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., C.K. Chang, A.A. Ghani, J. Ariffin, N.A. Zakaria and Z.A. Hasan, 2009. An ANFIS-based approach for predicting the bed load for moderately sized rivers. J. Hydro-Environ. Res., 3: 35-44.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., F.C. Wu, A.A. Ghani, S.M. Narulkar, N.A. Zakaria and C.K. Chang, 2008. Comparison between genetic algorithm and linear programming approach for real time operation. J. Hydro-Environ. Res., 2: 172-181.
CrossRef  |  
Azamathulla, H.M., M.A.M. Yusoff and Z.A. Hasan, 2014. Scour below submerged skewed pipeline. J. Hydrol., 509: 615-620.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., M.C. Deo and P.B. Deolalikar, 2006. Estimation of scour below spillways using neural networks. J. Hydr. Res., 44: 61-69.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., M.C. Deo and P.B. Deolalikar, 2008. Alternative neural networks to estimate the scour below spillways. Adv. Eng. Software, 39: 689-698.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., M.C. Deo, M.R. Bhajantri and P.B. Deolalikar, 2004. Scour at the base of flip-bucket spillways. ISH J. Hydraulic Eng., 10: 121-129.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., Z. Ahmad and A.A. Ghani, 2013. An expert system for predicting manning's roughness coefficient in open channels by using gene expression programming. Neural Comput. Applic., 23: 1343-1349.
CrossRef  |  Direct Link  |  
Azamathulla, H.M., Z. Ahmad and A.A. Ghani, 2013. Computation of discharge through side sluice gate using gene-expression programming. Irrig. Drain., 62: 115-119.
CrossRef  |  Direct Link  |  
Azmathullah, H.Md., M.C. Deo and P.B. Deolalikar, 2005. Neural networks for estimation of scour downstream of a ski-jump bucket. J. Hydraulic. Eng., 131: 898-908.
CrossRef  |  Direct Link  |  
Chang, C.K., H.M. Azamathulla, N.A. Zakaria and A.A. Ghani, 2012. Appraisal of soft computing techniques in prediction of total bed material load in tropical rivers. J. Earth Syst. Sci., 121: 125-133.
CrossRef  |  Direct Link  |  
Dehghani, A.A., H.M. Azamathulla, S.F.H. Najafi and S.A. Ayyoubzadeh, 2013. Local scouring around L-head groynes. J. Hydrol., 504: 125-131.
CrossRef  |  Direct Link  |  
Ghani, A.A. and H.M. Azamathulla, 2010. Gene-expression programming for sediment transport in sewer pipe systems. J. Pipeline Syst. Eng. Pract., 2: 102-106.
CrossRef  |  Direct Link  |  
Ghani, A.A. and H.M. Azamathulla, 2013. Development of GEP-based functional relationship for sediment transport in tropical rivers. Neural Comput. Applic., 24: 271-276.
CrossRef  |  Direct Link  |  
Ghani, A.A., H.M. Azamathulla, C.K. Chang, N.A. Zakaria and Z.A. Hasan, 2011. Prediction of total bed material load for rivers in Malaysia: A case study of Langat, Muda and Kurau Rivers. Environ. Fluid Mech., 11: 307-318.
CrossRef  |  Direct Link  |  
Ghani, A.A., H.M. Azamathulla, T.L. Lau, C.H. Ravikanth, N.A. Zakaria, C.S. Leow and M.A.M. Yusof, 2011. Flow pattern and hydraulic performance of the REDAC gross pollutant trap. Flow Measurement Instrum., 22: 215-224.
CrossRef  |  Direct Link  |  
Guven, A. and H.M. Azamathulla, 2012. Gene-expression programming for flip-bucket spillway scour. Water Sci. Technol., 65: 1982-1987.
CrossRef  |  Direct Link  |  
Guven, A., A. Aytek and H.M. Azamathulla, 2013. A practical approach to formulate stage-discharge relationship in natural rivers. Neural Comput. Applic., 23: 873-880.
CrossRef  |  Direct Link  |  
Guven, A., H.M. Azamathulla and M. Gunal, 2012. Comparative study of predicting scour around a circular pile. Maritime Eng., 165: 31-40.
Guven, A., H.M. Azamathulla and N.A. Zakaria, 2009. Linear genetic programming for prediction of circular pile scour. Ocean Eng., 36: 985-991.
CrossRef  |  Direct Link  |  
Hasan, Z.A., K.H. Lee, H.M. Azamathulla and A.A. Ghani, 2011. Flow simulation for lake Harapan using CCHE2D-a case study. Int. J. Model. Simulat., 31: 85-89.
CrossRef  |  Direct Link  |  
Khan, M., H.M. Azamathulla and M. Tufail, 2012. Gene-expression programming to predict Pier scour depth using Laboratory data. J. Hydroinformatics, 14: 628-645.
CrossRef  |  Direct Link  |  
Khan, M., H.M. Azamathulla and M. Tufail, 2014. Closure to discussion Bridge pier scour by gene expression programming by C. Neil and D. Andres. Water Manage., 167: 368-369.
Khan, M., H.M. Azamathulla, M. Tufail and A.A. Ghani, 2013. Bridge pier scour prediction by gene expression programming. Proc. ICE-Water Manage., 165: 481-493.
CrossRef  |  Direct Link  |  
Khodashenas, S.R., R. Roshan, H. Sarkardeh and H.M. Azamathulla, 2010. Vortex study at orifice spillways of Karun III dam. Dam Eng., 21: 131-142.
Madadi, M.R., H.M. Azamathulla and M. Yakhkeshi, 2014. Application of Google earth to investigate the change of flood inundation area due to flood detention dam. Earth Sci. Inform., (In Press) 10.1007/s12145-014-0197-8.
CrossRef  |  Direct Link  |  
Maghsoodi, R., M.S. Roozgar, H. Sarkardeh and H.M. Azamathulla, 2012. 3D-simulation of flow over submerged weirs. Int. J. Model. Simul., 32: 237-243.
CrossRef  |  Direct Link  |  
Mohammadpour, R., A.A. Ghani and H.M. Azamathulla, 2012. Prediction of equilibrium scour time around long abutments. Proc. ICE-Water Manage., 166: 394-401.
CrossRef  |  Direct Link  |  
Mohammadpour, R., A.A. Ghani and H.M. Azamathulla, 2013. Estimation of dimension and time variation of local scour at short abutment. Int. J. River Basin Manage., 11: 121-135.
CrossRef  |  Direct Link  |  
Mohammadpour, R., A.A. Ghani and H.M. Azamathulla, 2013. Numerical modeling of 3-D flow on porous broad crested weirs. Applied Math. Model., 37: 9324-9337.
CrossRef  |  Direct Link  |  
Najafzadeh, M. and H.M. Azamathulla, 2013. Group method of data handling to predict scour depth around bridge piers. Neural Comput. Applic., 23: 2107-2112.
CrossRef  |  Direct Link  |  
Najafzadeh, M. and H.M. Azamathulla, 2013. Neuro-fuzzy GMDH to predict the scour pile groups due to waves. J. Comput. Civil Eng. 10.1061/(ASCE)CP.1943-5487.0000376.
CrossRef  |  Direct Link  |  
Najafzadeh, M., G.A. Barani and H.M. Azamathulla, 2013. GMDH to predict scour depth around a pier in cohesive soils. Applied Ocean Res., 40: 35-41.
CrossRef  |  Direct Link  |  
Najafzadeh, M., G.A. Barani and H.M. Azamathulla, 2014. Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling. Neural Comput. Applic., 24: 629-635.
CrossRef  |  Direct Link  |  
Roshan, R., H.M. Azamathulla, M. Marosi, H. Sarkardeh, H. Pahlavan and A.A. Ghani, 2010. Hydraulics of stepped spillways with different numbers of steps. Dams Reservoirs, 20: 131-136.
Direct Link  |  
Salamasi, F. and H.M. Azamathulla, 2013. Determination of optimum relaxation coefficient using finite difference method for groundwater flow. Arabian J. Geosci., 6: 3409-3415.
CrossRef  |  Direct Link  |  
Samadi, M., E. Jabbari and H.M. Azamathulla, 2014. Assessment of M5' model tree and classification and regression trees for prediction of scour depth below free overfall spillways. Neural Comput. Applic., 24: 357-366.
CrossRef  |  Direct Link  |  
Yazdi, J., H. Sarkardeh, H.M. Azamathulla and A.A. Ghani, 2010. 3D-Simulation of flow around single groyne with free surface. Int. J. River Basin Manage., 8: 55-62.
Yusof, M.F., H.M. Azamathulla and R. Abdullah, 2014. Prediction of soil erodibility factor for peninsular malaysia soil series using ANN. Neural Comput. Applic., 24: 383-389.
CrossRef  |  Direct Link  |  
Zahabiyoun, B., M.R. Goodarzi, A.R.M. Bavani and H.M. Azamathulla, 2013. Assessment of climate change impact on the Gharesou river basin using SWAT hydrological model. Clean-Soil Air Water, 41: 601-609.
CrossRef  |  Direct Link  |  
Zahiri, A. and H.M. Azamathulla, 2014. Comparison between Linear genetic programming and M5 tree models to predict flow discharge in compound channels. Neural Comput. Applic., 24: 413-420.
CrossRef  |  Direct Link  |  
Zahiri, A., H.M. Azamathulla and S. Bagheri, 2013. Discharge coefficient for compound sharp crested side weirs in subcritical flow conditions. J. Hydrol., 480: 162-166.
CrossRef  |  Direct Link  |  
Zahiri, A., X. Tang and H.M. Azamathulla, 2014. Mathematical modeling of flow discharge over compound sharp-crested weirs. J. Hydro-Environ. Res., 8: 194-199.
CrossRef  |  Direct Link  |  
Zakaria, N.A., H.M. Azamathulla, C.K. Chang and A.A. Ghani, 2010. Gene expression programming for total bed material load estimation-a case study. Sci. Total Environ., 408: 5078-5085.
CrossRef  |  Direct Link  |