Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by X. H Li
Total Records ( 1 ) for X. H Li
  X. H Li , A. H Kishore , D Dao , W Zheng , C. A Roman and R. A. Word

Cervical ripening during pregnancy is a profound change in cervix structure and function characterized by increases in the proinflammatory cytokine IL-8 and dissolution of the cervical extracellular matrix. Relatively little is known about the molecular mechanisms that underlie these events. Here, we report identification of a novel isoform of micropthalmia-associated transcription factor in human cervical stromal cells (MiTF-CX) that is down-regulated 12-fold during cervical ripening and that represses expression of IL-8. Ectopic expression of MiTF-CX in human cervical stromal cells resulted in substantial suppression of endogenous IL-8 mRNA and protein expression, whereas expression of dominant negative MiTF-CX mutants with impaired DNA binding resulted in dramatic increases in IL-8 production. Gel shift, reporter gene, and chromatin immunoprecipitation assays revealed one strong binding site (E-box -397 CACATG-391) in the human IL-8 promoter that was crucial for mediating transcriptional repression by MiTF-CX. Moreover, we show that MiTF-CX expression in the cervix was itself positively autoregulated via two E-box motifs within a 2.1-kb promoter fragment. We therefore propose that maintenance of cervical competency during pregnancy is an active process maintained through suppression of IL-8 by the transcription factor MiTF-CX. During cervical ripening, loss of MiTF-CX would result in significant up-regulation of IL-8 mRNA and protein synthesis, thereby leading to recruitment and activation of leukocytes within the cervix and dissolution of the extracellular matrix.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility