Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by William W. Kwok
Total Records ( 3 ) for William W. Kwok
  William W. Kwok , Junbao Yang , Eddie James , John Bui , Laurie Huston , Andrew R. Wiesen and Michelle Roti
  Cellular immune responses against protective antigen (PA) of Bacillus anthracis in subjects that received the anthrax vaccine adsorbed (AVA) vaccine were examined. Multiple CD4+ T-cell epitopes within PA were identified by using tetramer-guided epitope mapping. PA-reactive CD4+ T cells with a CD45RA phenotype were also detected by direct ex vivo staining of peripheral blood mononuclear cells (PBMC) with PA-specific tetramers. Surprisingly, PA-specific T cells were also detected in PBMC of nonvaccinees after a single cycle of in vitro PA stimulation. However, PA-reactive CD4+ T cells in nonvaccinees occurred at lower frequencies than those in vaccinees. The majority of PA-reactive T cells from nonvaccinees were CD45RA+ and exhibited a Th0/Th1 cytokine profile. In contrast, phenotyping and cytokine profile analyses of PA-reactive CD4+ T cells from vaccinees indicated that vaccination leads to commitment of PA-reactive T cells to a Th2 lineage, including generation of PA-specific, pre-Th2 central memory T cells. These results demonstrate that the current AVA vaccine is effective in skewing the development of PA CD4+ T cells to the Th2 lineage. The data also demonstrated the feasibility of using class II tetramers to analyze CD4+ cell responses and lineage development after vaccination.
  Victoria Kasprowicz , Julian Schulze zur Wiesch , Thomas Kuntzen , Brian E. Nolan , Steven Longworth , Andrew Berical , Jenna Blum , Cory McMahon , Laura L. Reyor , Nahel Elias , William W. Kwok , Barbara G. McGovern , Gordon Freeman , Raymond T. Chung , Paul Klenerman , Lia Lewis-Ximenez , Bruce D. Walker , Todd M. Allen , Arthur Y. Kim and Georg M. Lauer
  We monitored expression of PD-1 (a mediator of T-cell exhaustion and viral persistence) on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells from blood and liver during acute and chronic infections and after the resolved infection stage. PD-1 expression on HCV-specific T cells was high early in acute infection irrespective of clinical outcome, and most cells continued to express PD-1 in resolved and chronic stages of infection; intrahepatic expression levels were especially high. Our results suggest that an analysis of PD-1 expression alone is not sufficient to predict infection outcome or to determine T-cell functionality in HCV infection.
  Hirotoshi Ebinuma , Nobuhiro Nakamoto , Yun Li , David A. Price , Emma Gostick , Bruce L. Levine , J. Tobias , William W. Kwok and Kyong-Mi Chang
  CD4+CD25+ regulatory T cells (CD25+ Tregs) play a key role in immune regulation. Since hepatitis C virus (HCV) persists with increased circulating CD4+CD25+ T cells and virus-specific effector T-cell dysfunction, we asked if CD4+CD25+ T cells in HCV-infected individuals are similar to natural Tregs in uninfected individuals and if they include HCV-specific Tregs using the specific Treg marker FoxP3 at the single-cell level. We report that HCV-infected patients display increased circulating FoxP3+ Tregs that are phenotypically and functionally indistinguishable from FoxP3+ Tregs in uninfected subjects. Furthermore, HCV-specific FoxP3+ Tregs were detected in HCV-seropositive persons with antigen-specific expansion, major histocompatibility complex class II/peptide tetramer binding affinity, and preferential suppression of HCV-specific CD8 T cells. Transforming growth factor β contributed to antigen-specific Treg expansion in vitro, suggesting that it may contribute to antigen-specific Treg expansion in vivo. Interestingly, FoxP3 expression was also detected in influenza virus-specific CD4 T cells. In conclusion, functionally active and virus-specific FoxP3+ Tregs are induced in HCV infection, thus providing targeted immune regulation in vivo. Detection of FoxP3 expression in non-HCV-specific CD4 T cells suggests that immune regulation through antigen-specific Treg induction extends beyond HCV.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility